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Summary

The goals of this research program were to

(i) determine how microstructural factors, especially the architecture of reinforcing

fibers, control stiffness, strength, strain to failure, work of fracture, notch

sensitivity, and fatigue life in 3D woven composites;

(ii) identify mechanisms of failure;

(iii) model composite stiffness;

(iv) model strength; and

(v) model fatigue life.

A total of eleven different angle and orthogonal interlock woven composites were

examined. These 3D woven composites possess an extraordinary combination of

strength, damage tolerance, and notch insensitivity. In many important regards, they far

outstrip conventional 2D laminates or stitched laminates.

We have determined the essential mechanisms of failure in monotonic and fatigue

loading and how they are related to the reinforcement geometry. Composite properties

depend on the weave architecture, the tow size, and the distributions in space and strength

of geometrical flaws. Important concepts follow for reliability, design, and manufacture.

We have developed the simplest possible models for predicting elastic properties,

strength, and fatigue life. These models can be implemented with minimal numerical

computation. Other properties, especially relating to damage tolerance, ultimate failure,

and the detailed effects of weave architecture, require eomputationally intensive

stochastic modeling. We have developed a new model, the "Binary Model," to carry out

such tasks in the most efficient manner.

This is the final report for task 9 in Space Systems Division contract NAS 1-

19243. It covers all work from January, 1993 up to the conclusion of the program in

November, 1994.



1. Introduction

Textile composites with three-dimensional (3D) reinforcement possess some

remarkable mechanical properties. In skin applications, 3D woven or braided composites

and stitched laminates are invulnerable to failure by delamination and buckling, provided

the through-thickness reinforcement is not distorted during fabrication [1-13]. The

through-thickness reinforcement limits delamination and damage extension after impact,

allowing compressive strength often to remain comparable to that of pristine material.

Like 3D carbon-carbon composites of earlier years [3], 3D woven polymer composites

possess exceptionally high strain to failure in either compression or tension [12,13]. In

work of fracture and notch insensitivity in tension, they far surpass metal alloys and

conventional polymer laminates [13].

Detailed experimental observations on 3D woven composites have revealed that

the reinforcement geometry has a dominant role in determining mechanisms of failure

[12-14]. Both the ideal composite geometry, in which in-plane tows are straight, and

deviations from the ideal are important. In fact, high stress to failure, notch insensitivity,

and damage tolerance can all be attributed to the presence of geometrical flaws in the

reinforcement [12-13]. Some geometrical flaws consist of certain local configurations of

tows, such as sites where through-thickness yarns wrap around nominally straight in-

plane yarns. Other geometrical flaws are segments of in-plane tows that are misaligned to

an unusually high degree.

This report deals with predicting the properties of 3D woven composites,

emphasizing the roles of geometrical flaws and the weave architecture. For predicting

composite elastic constants and tensile strength, geometrical flaws have a relatively minor

role. For predicting compressive strength, fatigue life, damage tolerance, and work of

fracture, geometrical flaws are all important. The reasons for this will be elucidated.

Many of the theoretical models described in the report have been encoded in

computer programs. These are detailed in Appendices. Source codes are available in

electronic form.
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2. Materials

Analyses will be presented for the eleven woven interlock composites listed in

Table 1. Figure 1 shows the three types of weave in this group: layer-to-layer and

through-the-thickness angle interlock; and orthogonal interlock weaves. "Stuffer" and

"Fdler" tows form an orthogonal array suggestive of a course 00/90 ° laminate, while

"warp weaver" tows provide through-thickness reinforcement. Complete specifications of

weave patterns are given in Appendix A. In the jargon of crystalIographers, all the

weaves are orthorhombic in the absence of any tow distortions. The orthogonal interlock

weaves are also invariant under certain inversions; but not the angle interlock weaves, as

contemplation of the detailed drawings in Appendix A will reveal.

The subject composites can also be classified by the total fiber volume fraction,

V, achieved in processing: "lightly compacted" composites, with relatively low V, and

"heavily compacted" composites, with relatively high V. Table 1 reintroduces labels from

[12] for the 11 composites studied, with the italic letter designating the degree of

compaction ("l" for light and "h" for heavy).

The layers in Fig. 1 are much thicker than plies in a conventional 212) laminate,

because the individual tows are ~ 1 mm 2 in cross section. Such coarseness lowers

manufacturing cost, which rises with the number of yarns to be set up on the loom.

Fortunately, it also favors damage tolerance and notch insensitivity [12].

Nearly all the composites of Table 1 consist of AS4 carbon fiberst in epoxy resin.

The exceptions are composites l-L-2 and l-T-2, in which the warp weavers were S-glass

fibers. All lightly consolidated composites were made with Tactix 138 resin cured with

H41 hardener*; all heavily compacted composites were made with Shell RSL-1895 resin

with EPON CURING AGENT _ W.** Further processing details appear in [12-14].

Table 1 also lists for each composite the weaver's specifications of the linear

density of yarns in the loom (ends per unit length, e, and picks per unit length, p) and the

yields (length per unit mass) Ytx, tz = s, f, or w for stuffers, fdlers, or warp weavers. (The

symbol tx will be used throughout this report to identify tow type in the weave.)

_"Hercules Inc., Salt Lake City, Utah.
* Dow Chemical Co., Freetxxt, Texas.
** Shell Oil Co., Anaheim, California.

3
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Figure 1. Sections normal to the filler direction of specimens with three different

weave types. Stuffers and warp weavers appear as light ribbons. Sections

of fillers appear as dark patches.

4



2.1 Fiber Distributions

Reliable predictions of engineering properties require accurate knowledge of the

volume fractions of stuffer, filler, and warp weaver fibers. In principle, these volume

fractions could be deduced from the weaver's specifications just listed, together with the

measured thickness of the composite. However, this would assume that the mean

separation of yarns did not change during manufacture of the composite, which may be

optimistic.t In this work, the weaver's specifications were used only to deduce the

fractions by volume fa (o_ = s, f, or w) of all fibers that lie in stuffers, f'dlers, and warp

weavers.*** All macroscopic elastic properties will be deduced from these fractions, the

measured total fiber volume fraction, V, and the measured composite thickness, t.

In a composite with ns layers of stuffers alternating with ns +1 layers of fillers

through the thickness, nw warp weavers between successive columns of stuffers (see

Appendix A), and in which all yarns are made of the same fibers

fs=nsex:_ . ff=(ns+ 1)pcf ; fw=nweCw (1)
Lys ' Lyf Lyw

where Cs, cf, and Cw are crimp fadtors; L is chosen to satisfy fs + ff + fw = 1; and Yw is an

appropriately weighted average for composites with warp weavers and surface warp

weavers of unequal yields (composites h-L-1 and h-L-2). The crimp factors are

customarily determined by measuring the lengths of yarns extracted from a representative

length of woven preform. Both Cs and cf are very close to unity. Values of Cw supplied by

the weaver are given in Table 1. (For the lightly compacted composites, which were the

fin'st manufactured [13], crimp factors could not be found in old records. Estimates have

been substituted. Since the warp weavers constitute a relatively small fraction of all

reinforcement, the effect on fs and ff and therefore on almost all predicted properties of

any error in Cw is negligible compared to other factors, especially softening due to

waviness. The single exception is the through-thickness modulus - see Section 3.) The

only additional measurement required to fix the density of reinforcement in a composite

containing a single type of fiber is the total fiber volume fraction, V.

t Total fiber volume fractions estimated for the heavily compacted composites from the weaver's
specifications and the measured composite thickness were found to be consistently higher than measured
values by up to 5%.

*** It will be assumed here that stuffers and Idlers spread equally during consolidation. This assumption is
reasonable in manufacturing flat panels. When preforms are deformed to make curved parts, especially
those involving nondevelopable transformations, tows are likely to thin or consolidate anisotropically. The
analysis of such cases would be a useful research topic.
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Table 1. Composite and Fiber Data

Comlx_ite Architecture
Label

(a) Lightly Compacted

l-L- 1 Layer-to-Layer

I-L-2 Angle Interlock

1-T- 1 Through-the-Thlckness

l-T-2 Angle Interlock

1-0 O_ogonal Int_Iock

Co)Heavily Compacted

h-L-I Layer-to-Layer

h-L-2 Angle Interlock

h-T-I Through-the-Thickness
h-T-2 Angle Interlock

h-O-I OrthogonalInterlock
h-O-2 OrthogonalInterlock

Tow Yield Linear Tow Density

Stuffers Fillers Weavers Stuffers Fillers
ys(mm/g) yf(mm/g) yw(mm/g) e(mm-1) a p(mm-1) b

652 652 1525 0.51 0.44

652 652 1510 0.51 059

652 652 1525 0.47 0.50

652 652 1510 0.51 0.50

Crimp Factor
(Warp Weavers)

Cw

1.2c
1.2c

1.4c
1.4c

652 652 1525 0.47 0.51 3.25c

570 1140 (2280,13600)d 0.55 0.51

1140 2280 (4570,13600)d 0.71 0.79

570 1140 2280 0.55 0.51
1140 2280 4570 0.71 0.79

570 1140 2280 0-55 0.51
1140 2280 4570 0.71 0.79

1.2

1.03

1.375
1.25

4
4.5

a"endsper cm" - number ofcolumns of SUlffersper cm intheweft direction

b "picks per cm" -- number of columns of fillers per cm in the warp direction

c Estimated, not measured

d The first figure refers to warp weavers, the second to surface warp weavers (see Appendix A)

In a composite in which the warp weavers contain different fibers from those in

the stuffers and fillers (composites l-L-2 and l-T-2), fw is determined by a separate

expe_ental measurement of the volume fraction, V', of weaver fibers ($2 glass here): fw

= V'/(V + V'). In this case only fs and ff are def'med by F_.q. (1), with L chosen to satisfy fs

+ ff = V](V +V').

Table 2 shows values of fs, ff, and fw computed by these rules, along with

measured values of V and, where appropriate, V'.

In estimating flexural rigidity, information is also required of the distribution of

stuffers and fillers through the thickness of the composites. Let tf and ts denote the

thicknesses of filler and stuffer layers, with all filler layers assumed equal and all stuffer

layers assumed equal (Fig. 2). (Generalization to unequal layers of stuffers or fillers,

6



which might be preferred to maximize flexural rigidity in one direction,

obviously.) Assuming equal degrees of compaction of stuffers and fiLlers,

follows

while

ts _ yie
tf YsP (2a)

(ns + 1) tf + nsts = t, (2b)

where t denotes the measured composite thickness (Table 2). Hence

yspt

tf = (ns+l)ysp + nsyfe (3a)

yfet

ts = (ns+ 1)ysp + nsyie (3b)

In the coordinate system of Fig. 2, the layers of the upper half of the stack have the

boundaries Uo = 0 and

f+ _ts (nsi odd)
ui = . (i=l ..... ns+l).

!_-tf +_ts (nsi even)

(4)

2.2 Tow Waviness

In contradiction Of the ideal geometry prescribed by the weaver and widely

assumed in prior modeling of textile composites, stuffers and f'fllers are in reality not

straight. Indication of this for stuffers is visible in Fig. 1: the stuffers exhibit appreciable

deflections in the out-of-plane or through-thickness direction (i.e., in Xl-X3 planes in

Fig. 1). Figure 3 shows that such irregularity or waviness can be quite dramatic for fillers.

It is generally larger for fillers th_ stuffers because the stuffers, being warp yarns, are

held in tension during weaving, whereas the f'fliers are non-tensioned weft. In the heavily

compacted composites, f'flier distortion is probably further exacerbated by the fact that

f'fllers are only half as thick as stuffers. Waviness_ stuffers and fillers tends to be greater

in the lightly compacted composites than in the heavily compacted composites; and

greater for angle interlock than for orthogonal interlock weaves.

7



T_l ,i,,ers
ts _ stuffers

i l tf fillers

l stuffers

fillers

_,_C.113093

3
k

u3

u 2

Figure 2. Representative layer sequence of fillers and stuffers through the thickness,

with the layer thicknesses tf and ts defined. For the case shown, ns=2.

fillers _

2 mm

fillers I

Figure 3. Sections of two specimens normal to the stuffer direction showing typical

irregularity or waviness of fillers (above: h-L-l; below: h-L-2).



Table 2. Composite Volume Fractions and Dimensions

Composite
Label

Fraction by Volume of All Fibers
uhatLie in: Measured Fiber
Staffers Fillers Weavers Volume Fractiona

fs ff fw V(V')

(a) Lightly Compacted

l-L-1 0.385
l-L-2 0.347

0.418 0.197 0.35-20.03
0.502 0.15i 0.370-&-0.005b (0.066_+0.004e)

I-T-1 0.381
I-T-2 0.406

0.504 0.115 0.466_.+0.003
0.497 0.097 0.408__+0.020b (0.044__+0.004e)

l-O 0.387 0.524 0.090 0.483_+0.010

(b) Heavily Compacted

h-L-1 0.587
h-L-2 0.580

0.340 0.073 0.620!-0.008
0.375 0.045 0,557__+0.015

h-T-1 0.571
h-T-2 0.571

0.331 0.098 0.613_+0.003
0.369 0.059 0.592_+0.014

h-O-1 0.586
h-O-2 0.545

0.340 0.073 0.619-20.008
0.353 0.102 0.593_+0.014

a measured by acid digestion
b graphite fibers

c glass fibers

following ASTM Standard D3171

Composite
Thickness

t (mm)

12.6
12.4

10.2
9.7

8.8

5.61
6.25

5.73
5.77

5.79
5.87

Warp weavers also exhibit waviness; in some cases, they are the most severely

distorted of all the tows. Warp weaver irregularity is generally more pronounced in angle

interlock than in orthogonal interlock composites. It is also closely correlated with the

reduction in thickness of the woven preform during consolidation of the composite [12],

as should be expected. Some examples of warp weaver crimp appear in Fig. 4. See also

Fig. 4 of [12].

There is also some in-plane misalignment of stuffers and fillers, i.e., in the Xl-X2

plane. However, these fluctuations are considerably smaller than out-of-plane

misalignments and are neglected in all the following analyses.
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(a) layer-to-layer angle interlock

weavers
/ stuffer_

(b) orthogonal interlock ...........

warp

we ay_eE/_

t mm

Figure 4. Sections normal to the filler direction showing warp weaver crimp in two

heavily compacted composites.

Out-of-Plane Waviness of Stuffers and Fillers

Out-of-plane waviness was quantified by statistical analysis of digitized images of

cross sections.t Digital image analysis was used to reduce images of stuffers and ftllers

such as those in Figs. 1 and 3 to one dimensional curves or "tow loci" representative of

their centers: Typical tow loci are shown superimposed on the fillers of Fig. 3. The

analysis of elastic properties requires data on the distribution of out-of-plane

misalignment angles along the entire length of tows. The analysis of strength and fatigue

life requires distributions of extreme values.

Considerable effort was expended in finding the best method of generating and

smoothing tow loci. Details of the procedure finally selected are as follows. Cross

sectional images were first digitized on 256 x 256 arrays. The size of the area on the

specimen represented by a single pixel depended on the image magnification. A gray

f Similar analysis of waviness in triaxial braids can be found in [15] and [16].
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level threshold was then used to delineate individual tows. The representation of each tow

identified in this manner was then skeletonized by alternately eliminating pixels from the

upper and lower boundaries. The coordinates of the centers of mass of the surviving

pixcls in the skeletons were stored for subsequent analysis as the raw tow loci data.

Subjectivity entered in the procedure to this point only in a small amount of touching up

to aid in contrast thresholding and the elimination of some spurious features associated

with fragments of tows caught on the specimen section.

2

A

E
E 1

CO

x

SC.5_.44.112993

I I I I I

0 I I [ I I
0 10 20 30

x 1 (mm)

Figure 5. Steps on a digitized tow locus reflecting the size of pixels in the digitized

image (solid curve); and a smoothing spline function (dashed curve).

The first step in deducing misalignment data from the raw tow loci data was to

eliminate noise arising from the digital image processing. The noise consisted of steps

corresponding to the pixel size (Fig. 5). In such stepped data, the most accurately known

values are the midpoints of the vertical segments. Smoothing was therefore effected by

fitting cubic splines to the set of all step midpoints on each locus. The fitting routine

used* finds splines of minimum curvature such that the root mean square difference

between the fitted splines and the data points does not exceed some specified amount 8.

Forcing the splines to pass exactly through the data (8 = 0) results in large oscillations or

ringing as the splines accommodate noise. Specifying a very large value of _i results in

lost information, with the fitted spline tending to a straight line. The optimal choice of 8

should correspond to the expected error in each datum. The error should be a small

fraction of the step height, but is difficult to specify a priori. Therefore, the optimal value

of 8 was determined by comparing fitted splines with the original mierographs by eye.

Acceptable fits were found when 8 = 0.02 + 0.01 mm, or about one fifth of the step height

* IMSL (International Mathematical Software Library) routine ICSCSU.
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(Figs. 3 and 5). The fired curves were considerably superior to smoothed curves obtained

by filtering Fourier transforms.

To check the adequacy of the pixel density, some cross sections were analyzed

again starting with images of higher magnification. The step size was accordingly

smaller. With 8 again set to one fifth the average step size, smoothed curves close to

those obtained fzom the lower magnification images were generated.

At least five sections were analyzed for each material. A cumulative probability

distribution (cpd) was then formed for the out-of-plane misalignment angle, _, of small,

equal intervals on all smoothed tow loci. Typical cpds are shown in Fig. 6. Although

there are no obvious physical grounds to expect it, experience shows that each such cpd

can be fitted quite well by a symmetric normal distribution

F_(_) =/___ f_(_') d_', (5a)

with the density function f_(_) given by

f_(g) =---_ e'_Z/?'_ i (5b)
o_'/2x

Typical fitted functions Fg(_) are also shown in Fig. 6. The width, og, of the distributions

determines the degree of softening of Young's modulus in the tow direction due to out-of-

plane tow waviness (see below). Values of og determined by maximum likelihood

estinaators are listed in Table 3.

The influence of uncertainty in the smoothing parameter 8 was assessed by

reevaluating og using the lowest and highest credible values assigned to & The resulting

uncertainty in o 4 is also indicated in Table 3. For stuffers, it is typically ~ 30%; for fillers,

-- 10%. Higher (lower) values of 8 lead to narrower (broader) distributions of _. However,

as long as 8 is varied consistently for all cases, the net effect is broadening or narrowing

of all distributions by the same factor. The relative uncertainty in og for different

composites may therefore be much less than the uncertainty shown in Table 3. From

statistical arguments, it should fall as the square root of the number of data points

sampled (e.g. [17]). When the data available for the stuffers in each composite were

analyzed in two halves, the two values of o 4 obtained differed typically by 10%. This is a

better estimate of the relative uncertainty in out-of-plane misalignment angles for

stuffers.
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Figure 6. Distributions of the out-of-plane misalignment angle _ for (a) stuffers in

the composite l-T-2 and (b) fillers in the composite l-L-2. The irregular

curves are the data; the overlaid smooth curves show symmetric normal

distributions fired by maximum likelihood estimators.

Crimp of Warp Weavers

The distortion of warp weavers is much more difficult to quantify. Warp weavers

follow complicated paths and are often much more severely crimped than stuffers or

fillers (e.g. Fig. 4). Warp weavers, being of lighter denier, also exhibit greater departures

proportional to their widths from the planes in which they nominally lie. Therefore

specimen sections rarely display cleanly def'med outlines of warp weavers. Warp weavers

fade in and out of exposed sections and have often been fragmented by the cutting action.

It was not possible to obtain realistic statistics for warp weaver misalignment

angles; however these might be defined. Instead, a qualitative assessment of the degree of

crimp was made by inspecting images of cross sections such as Fig. 4. The degree of

crimp is manifestly correlated with the extent to which the dry fiber preform was

squashed in consolidating the composite (Table 3): compare the heavily compacted

composite of Fig. 4a with the lightly compacted composite of Fig. lb.
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Table 3. Tow Waviness Parameters

a_ (degrees) Sd_s Knockdown
Factor 1](=)

Composite Stuffezs F'fllers Stuffers Fillers Degree of Warp
Label Weaver Crimp

l-L-1 _a _a - severe
I-L-2 4.0-J:l.0 9.9"£'0.8 0.82x'-0.07 0.45-_.04 severe
l-T-1 3.4m_0.8 6.0-_.6 0.86i-0.06 0.66-£-0.04 intermediate
1-'1"-2 3.7x_0.7 6.4_+0.8 0.84i_0.05 0.64:£-0.05 intermediate
l-O 3.4i-0.8 1.2--£1.0 0,8(xi-0.06 0.98i-0.05 severe

h-L- 1 1.7i-0.5 4.8:L-0.7 0.97x_0.02 0.69i-0.06 severe
h-L*2 2.0_.6 14.8:_0.8 0,95i'0.02 0.32i-0.02 severe
h-T-1 1.3:L-0.5 2.9-_.7 0,98_.02 0.91i-0.04 intermediate
h-T-2 1.7i'0.3 4.Zil.0 0,97=L-0.02 0.83i-0.06 slight
h-O-I 0.3m'O.1 3.4:L-0.7 0.99x'0.01 0.8 9-.L-0.05 int_m'nediate
h-O-2 1.2i-0.6 1.8+1.0 0,98_+0.02 0.97£0.06 slight

Composite Thickness/
Preform Thickness

b

0.79
0.75
0.83
0.93
0.87
0.91

a This preform was so inhomogeneously distorted that meaningful measurements of F_ could not be made.

b Not known for lightly compacted composites.

Out-of-Plane Misalignment Exrrema

Out-of-plane misalignment extrema were defined as the angles of maximum

magnitude between successive zeros of _. Successive zeros of _ tend to be separated by a

length commensurate with the tow spacing - misalignment is a product of the

reinforcement architecture. The misalignment extrema are identified with the tow

segment misalignment angle _.

Figure 7 shows cumulative probability distributions (cpd's) F[ of _. The cpd's fall

clearly into two groups, corresponding to the lightly and heavily compacted composites.

The lightly compacted composites are the most severely misaligned, a result mainly of

inferior control of tow regularity during the weaving process.

The statistics of misalignment extrema are essential in estimating strength and

fatigue life (Section 5).
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Figure 7. Cumulative probability distributions for measured misalignment extrema.
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3. Macroscopic Elastic Constants

Properties related to failure, including strength and the degree of localization of

damage, are sensitive to flaw statistics, especially the number and spatial distribution of

extreme flaws. In the elastic regime, on the other hand, the effects of geometrical

irregularity ought to be more moderate. Elastic constants measure a spatially averaged

response, in which extremes carry only a small weight. Thus in [13] it was shown that

Young's modulus in the primary load-bearing direction of 3D woven composites can be

predicted well by combining rules of mixtures with crude estimates of the effects of

random tow misalignment or waviness. In fact, the 3D woven composites studied in [12-

14] behave in the elastic regime much like laminates. The idea of simple models for

elastic constants is pursued in this section in a complete description of the elastic

properties of the same class of 313 woven composites.

The emphasis in this section is on predicting macroscopic composite elastic

properties, i.e., properties applicable over gauge lengths larger than the characteristic

scale of the pattern of tows in the reinforcement. Experimental methods have been

developed for characterizing the waviness of nominally straight tows, which are in

practice far from straight. Tow waviness leads to reduction of the effective axial modulus

of a single tow. A simple estimate of this softening is then incorporated in a model of the

composite, in which spatially averaged composite properties are estimated by averaging

the properties of constituent tows of different orientations.

The simple approach espoused in this section follows orientation averaging

models presented for 3D composites many years ago [18-20]. More recent variants

appear in [21] and [22]. The primary goal of this paper is to test how well macroscopic

elastic constants can be predicted by such approximations for the current generation of

3D woven composite panels, provided tow irregularity is accounted for in an appropriate,

spatially averaged way. Computationally, the models require nothing more than the

inversion of a 9 x 9 matrix. Conceptually, they have the immense advantage of

simplicity, which should be contrasted with the large computations that follow from f'mite

element formulations of the same task.

While the simple approach works very well for predicting the in-plane

macroscopic properties of flat panel specimens, in other problems a more complete

description of the stress distribution throughout the composite is required. Important

problems of this class include modeling the elastic properties of three-dimensionally
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reinforced parts of complex shape; and analyzing the random distribution of loads in

individual reinforcing tows when the tows are irregular. For these problems, finite

element or similarly laborious computations are inevitable. The formulation of a new

finite element model called the "Binary Model," which is designed to deal most

efficiently with these and other problems, was presented in [23]. In Section 4, the

calibration of the Binary Model for elastic problems is described in full and it is used to

model statistical aspects of the composites studied here.

3.1 Experimental Data

Since the warp weavers generally contain a small fraction of the total fibers, the

reinforcement is dominated by the orthogonal arrays of stuffers and fillers and is

therefore approximately orthotropic. Detailed modeling cord'mns orthotropic symmetry

over gauge lengths exceeding several tow diameters, even in the presence of local

irregularities in tow positioning (Section 4). Therefore, macroscopic elastic properties are

given by nine Voigt elastic constants, Cij. With Xl lying in the stuffer direction, x2 in the

filler d tion, and x3 in the through-thickness direction,

G1

O2

¢23

'_31

'_12

Cll

C21

= (231
0

0
0

C12 C13 0 0

C22 C2a 0 0

Cs2 Css 0 0
0 0 C44 0

0 0 0 Css
0 0 0 0

0 E1

0 e2

0 e3

0 ?23

0 731

C66 _12

(6)

The constants Cij are often determined from measurements of Young's modulus and

Poisson's ratio for uniaxial loading in each of the directions Xl, x2, and x3 together with

measurements of the shear moduli G23, G31, and G12 (e.g., [24]):

-1
ISis]=[qj] C7a)

[Sis] =

1/El -V12/E1 -V23/E1 0 0 0

°V12]rE1 l/E2 -V23/E 2 0 0 0

-V13/E1 -v23_2 l/E3 0 0 0

0 0 0 1/G23 0 0

0 0 0 0 1/G31 0

0 0 0 0 0 1/G12

(7b)
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where Ei isYoung's modulus for loading in the directionxi,vijisPoisson'sratiofor the

concomitant contraction in the direction xj, and use has been made of the symmetry

relation

vi/Ei=vj/Ej (8)

In this work, the engineering constants Eb E2, v23, v31, and v12 were determined

by conducting uniaxial tension tests in the in-plane directions x I and x2. Dog-bone

specimens were used in these tension tests, with gauge sections approximately 10 mmx

20 mmx (specimen thickness). The through-thickness modulus E 3 was deduced from

tests in which specimens were loaded in compression in the direction x3 between flat

platens. Since the in-plane dimensions of the compression specimens far exceeded their

thicknesses, the in-plane strains in the compression tests remained approximately zero.

The load-displacement data therefore yielded the stiffness maa'ix element C33. Young's

modulus E3 was calculated from this value of C33 and the measured values of El, E2, and

vii using Eq. (7). Test calculations showed that the uncertainty in E3 due to measurement

errors in the other engineering elastic constants was typically ~ 5%. Shear moduli were

not measured. Some values taken from other work will be used to assess predictive

models below.

In many of the tension tests, full-field strain maps were obtained by moire

interferometry. The moird fringe maps always revealed significant nonuniformity in

surface strain distributions. Fringes formed by in-plane displacements (i.e., displacements

on Xl-X2 planes) parallel to the load correspond to the pattern formed by warp weaver

extrema at the surface being observed (e.g., Fig. 8a). The surface is revealed as an

approximately periodic pattern of relatively soft and hard patches (shown by locally high

or low fringe densities), with lattice parameters commensurate with the tow spacings.

However, the pattern is always imperfect: significant, nonperiodic irregularity exists in

the details of the strain distributions. In-plane displacements transverse to the load were

almost always very small, leading to very sparse fringe systems and indicating very small

Poisson's ratios (e.g., Fig. 8b).

Fringes formed by displacements on through-thickness sections by loads in the

direction Xl are typified by Fig. 9. Displacements in the loading direction reveal fairly

uniform strain (Fig. 9a); whereas displacements in the through-thickness direction reveal
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highly nonuniformstrain(Fig. 9b).Relativelyhardareasin Fig. 9baredirectly correlated

with warp weaverson thesurfacebeingexamined.

Taking accountof theroughly periodicpatternsexemplifiedby Fig. 8a, in-plane

Young's moduli representativeof macroscopicstrainswereobtainedby averagingstrains
overanareaof approximately10mmx 10mm.Thein-planePoisson'sratio wasdeduced

from the total displacementacrossthe specimenin the direction of the contraction,

averagedover a length of approximately 10mm along the load axis. The through-
thickness modulus E3 and Poisson's ratio V13 were determined from the total

displacement in the through-thickness direction.

The measured elastic constants are reported in Table 4. In a few cases, multiple

tests were run to establish representative deviances. For all constants, the deviance was

typically 5-10%. Factors contributing to the deviance will be discussed below.

Figure 8. Moir6 fringe patterns formed on an in-plane surface (Xl-X2 plane) of a

specimen of composite h-O-2 under uniaxial loading in the direction x].

(a) Displacement in the direction Xl. (b) Displacement in the direction x2.
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Figure 9. Moir6 fringe patterns formed on a through-thickness section (Xl-X 3 plane)

in a specimen of composite h-L-1 under uniaxial loading in the direction

x_. (a) Displacement in the direction Xl. (b) Displacement in the direction

X3.

3.2 An Orientation Averaging Model

Macroscopically averaged elastic constants have been estimated in the past for

both 2D and 3D composites of stiff, continuous fibers in a soft matrix by simple

"orientation averaging" models [18-22]. In these models, small volumes in which all

fibers are aligned are treated as unidirectional composites. The whole composite becomes

a 3D tessellation of transversely isotropic grains or domains whose orientations depend

on the reinforcement architecture. Macroscopic properties are evaluated by averaging the

response of the body to applied loads, usually under the assumption of either uniform

stresses or, more often and more successfully, uniform strains. Such models are not

particularly good for polycrystals containing highly anisotropic grains. It is likely that

they owe their success for the continuous fiber composites studied so far to the high

degree of long-range order that exists therein among the orientations of small volumes of

fibers. Whether they will serve well in 3D composites containing short segments of

multi-oriented tows remains to be assessed.
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Table 4. Measured and Predicted ComposJ_te -ielastic Constants

Composite
Label

E1 (GPa) E2 (GPa) E3 (GPa)

Expt. OA a OAW b
l-L-1 _ 36.8 -
I-L-2 28.5 34.9 29.4
I-T-1 27 47.3 41.3
l-T-2 39 43.5 37.1
l-O 30+__2 51.9 45.4

h-L-1 85+8 91.5 88.6
h-L-2 80 81.2 77.6
h-T-1 79 88.6 87.0
h-T-2 72 85.1 82.4
h-O-1 88 93.1 93.0
h-O-2 69-&-_5 83.8 82.5

Expt. OA a OAW b ExpL OA a
38.7 5.7 9.0
47.6 22.8 5.9 7.0
59.5 40.1 8.0 9.4
51.6 34.0 7.9 7.0

45.5+1.5 63.9 62.6 7.0-2_1 13.7
43.8 56.2 40.8 l&_2 12.1
42.3 55.0 20.9 14.0 10.2
42.5 54.4 50.2 13.8 12.8
45.8 57.6 48.8 13.9 11.2
39.9 56.4 50.8 15.4 17.3
41.6 55.9 54.2 22.3 20.4

Composite v12
Label

Expt. OAa OAW b
l-L-1 0.024 0.023
I-L-2 0.11 0.027 .037
I-T-1 0.048 0.020 .022
l-T-2 0.21 0.027 .031
l-O 0.053 0.034 .032

h-L-1 0.061 0.034 .041

h-L-2 0.13 0.035 .065
h-T-1 0.054 0.033 .035
h-T-2 0.097 0.033 .036
h-O-1 0.055 0.051 .054
h-O-2 0.07 0.052 .052

ExpL

V23 v13

OA a OAW b ExpL OA a
0.216 0.22 0.607
0.310 .225 0.50 0.457
0.243 .200 0.375 0.541

0.325 .267 0.37 0.428
0.183 .180 0.49 0.184
0.266 .237 0.456
0.298 .221 0.45+-.05 0.425
0.248 .240 0.486
0.280 .262 0.443
0.192 .184 0.190
0.158 .156 0.157

Composite G12 (GPa) G23 (GPa) G31 (GPa)
Label

ExpL OA a OAW b ExpL OA a OAW b Expt. OA a
I-L-1 2.3 - 2.1 6.0
l-L-2 2.4 2.4 2.2 2.2 3.2
l-T-1 3.0 3.0 2.7 2.7 5.6
l-T-2 2.6 2.6 2.4 2.4 3.1
l-O 3.1 3.1 2.8 2.8 2.7

h-L-1 6.2 c 5.4 5.4 4.1 4.1 7.1
h-L-2 5.8 c 4.6 4.6 3.6 3.6 5.3
h-T-1 5.6 c 5.3 5.3 4.0 4.0 7.8
h-T-2 5.7e 5.0 5.0 3.9 3.9 6.2
h-O-1 5.0¢ 5.4 5.4 4.1 4.1 4.7
h-O-2 4.9 4.9 4.0 4.0 4.4

OAW b

6.9
9.4
7.0
13.7
12.1

10.1
12.8
11.2
17.3
20.4

OAW b

.436

.527

.406

.173

.450

.411

.483
.437
.189
.155

OAW b

3.2
5.6
3.1
2.7
7.1
5.3
7.8
6.2
4.7
4.4

aOrientatlon Averaging Model of Section 3.2: straight fibers
bOrientation Averaging Model amended for out-of-plane waviness of smiters and fdlers
eRef. [25]
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Property Estimates for Individual Tows

The properties of the individual domains, i.e., of a unidirectional composite, can

be estimated from the local fiber volume fraction and the fiber and matrix properties. In

this work, five different closed form approximations were assessed for estimating the

properties of unidirectional composites, including rules of mixtures and four models from

the literature which offer more realistic partitioning of stress between fibers and matrix

[22, 26-28]. Each method offers estimates in terms of the elastic constants of the fibers

and resin of the five independent elastic constants available for the unidirectional

composite when it is considered to be a transversely isotropic body. Of the five models,

only Hashin's composite cylinder model [26] permits transverse isotropy in the fibers

themselves; all the others treat the fibers as isotropic.

The resin and fiber properties used in this study are listed in Table 5. The

properties of the resins were measured in [12] and [13]. The properties of $2 glass fibers,

which are assumed isotropie, were taken from the literature (e.g., [24]) and

manufacturer's data sheets*. The properties of AS4 carbon fibers, which are far from

isotropic, were deduced by Naik [29] from the measured properties of a unidirectional

AS4/3501-6 composite with V = 0.6 (l-Iercules'_ data sheet) using a finite element model

of a composite of fibers in a square array. (Choosing a square array is hardly ideal, since

it violates isotropy normal to the fibers. However, ensuing estimates of the properties of

3D composites will not be noticeably affected by such a minor consideration, as will

become apparent below.) The value given in parentheses for the axial modulus of AS4

fibers is that given independently in the manufacturer's data sheets for bare AS4 fibers.t

Details of a comparison of the different models for the unidirectional composite

are presented in Appendix B. Young's modulus and Poisson's ratio for loading in the

fiber direction are essentially the same for all models and well approximated by the rule

of mixtures. However, the transverse modulus, Poisson's ratio in the plane of isotropy,

and the shear moduli all change significantly when the fiber anisotropy is taken into

account. Therefore, Hashin's model with anisotropic fiber properties was used in further

modeling.

* Owens Coming Glass Co., Detroit, Michigan.
t Hercules Inc., Salt Lake City, Utah.
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Fibers

Table 5. Fiber and Resin Elastic Constants

Young's Poisson's Axial Shear
Modulus Ratio Modulus

Ef (GPa) vf Gf (GPa)

AS4 carbon 235 (250) 0.25 55
fibers

S-2 glass 85 0.22 .b
fibers

Transverse

Young's
Modulus

Eft (GPa)

17

_b

Transverse

Poisson's
Ratio a

vf

0.27

_b

Resin

Young's Poisson's
Modulus Ratio

Er (GPa) vf

Tactix 138 3 0.3
Shell 1895 3.7 0.3

apoisson's ratio in planes of isotropy

bs2 glass assumed isotropic

Orientation Averaging--4deal Geometry

For orientation averaging, each 3D woven composite is divided into stuffer, filler,

and two warp weaver domains occupying fractions Act of the total composite volume (ct

= s, f, Wl, or w2 for stuffer, filler, or either weaver domain; 5".Act = 1).
0t

Each domain is characterized by an orientation along which the fibers within it are

presumed to lie. Tow waviness does not enter into the definition of these orientations, but

will be introduced separately. Thus all fibers within the stuffer or filler domains are

assumed to be parallel to the xl-axis or x2-axis respectively. While warp weavers are

always assumed to be piecewise straight and lie within Xl - x3 planes, their orientations

are defined differently for angle and orthogonal interlock weaves. For angle interlock

weaves, the fibers occupying domain Wl form an angle of 45 ° with the xl-axis; while the

fibers occupying domain w2 form an angle of-45 ° with the xl-axis. In angle interlock

weaves, domains Wl and w2 are occupied by equal numbers of fibers. For orthogonal

interlock weaves, domains Wl and w2 are assumed to contain fiber segments parallel to

the Xl axis and parallel to the x3 axis respectively in the proportions al:t in composite h-

O-1 or 2al:t in composites l-O or h-O-2, where al is the center-to-center spacing of fillers

(al = l/p). The assignment of orientations for the warp weavers is crude but adequate,
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because theircontributionto overallpropertiesislimitedby theirrelativelylow volume

fraction.

Let C(a) denote the stiffnessmatrix for domain a, i.e.the matrix of stiffness

constantsdetermined for the appropriateunidirectionalcomposite by Hashin's model in

the localcoordinatesystem (x,y,z) inwhich the x-axisliesalong thefiberdirection.The

composite stiffnessmatrix C isapproximated by

qJ--Z W (9)

where _(a) denotes C(ct)transformedintothe composite coordinatesystem (xb x2,x3) of

Fig. I.This transformationis a well-known resultof tensoralgebra (e.g.[30]).Equation

(9)isan exact representationof the composite ffallthreedomains c_= s,f,and w = Wl u

w2 sufferequal strainsunder macroscopically uniform applied loads.Whether domain

strainsare in factequal depends on thereinforcement architectureand the stateof applied

stress.An assessment of the effectof using other assumptions about the distributionof

domain strainsisdeferredtothe Discussion.

Equation (9) and Hashin's model for estimating C(ct) allow the composite elastic

constants C to be estimated from the properties of the constituent fibers and resin. The

solutions are closed by specifying the domain volume proportions Act. In practice, it is

difficult to specify Ao_ a priori, because of the complex geometry of resin pockets and

voids between tows. In the following work, Aa was simply equated to the fiber fraction

f0c of Table 2. To justify this assignment, the sensitivity of estimates of composite elastic

constants to the choice of Act was assessed by varying As with Aw = fw, _ Act = 1, and
Gt

total fiber fractions preserved by setting Vet = fctV/Act (with V the measured total fiber

volume fraction). Within the bounds imposed on As by requiring Va < 0.8 for each

domain, no composite elastic constant deviated by more than - 2%.

Engineering elastic constants computed via Eq. (9) and using Hashin's model for

anisotropic fibers are compared with the experimental measurements in Table 4.

Agreement is excellent for the shear modulus G12 and good for most other entries.

However, the in-plane Young's moduli E1 and E2 are consistently overestimated by the

orientation averaging model, while the in-plane Poisson's ratio v12 is underestimated.

The through-thickness modulus E3 and Poisson's ratio v13 are significantly high in some

eases and significantly low in others. Nearly all of these variances can be attributed to

geometrical irregularity.
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The Influence of Stuffer and Filler Waviness

The most important effect of tow waviness on elastic properties is to reduce the

axial stiffness of a tow. In the Orientation Averaging model, Young's modulus in the

fiber direction in domain a is knocked down by a factor TI(a) < 1, which can be estimated

from the distribution of out-of-plane misalignment angles. Consider an axially loaded

wavy tow as a sequence of misoriented unidirectional composite segments bearing equal

stresses in the load direction.t The spatially averaged Young's modulus _a_ of such a

tow is given by

(10)

where _a){g) is Young's modulus for a unidirectional composite under a load oriented at

angle _ to the fiber direction x. A simple and adequate expression for E(xa}(g) is (e.g.,

[27]).

1/E(_X¢) = c°s4_ (G 2V(x_)l sin4_E(_---T'+cos_-_sin2_ __!_) _-_)' E_a) (11a)

"- --l-- + (--L- - 2(1+v_ ')) _ 9- (small _) (ilb)

where E(? ), _a), "-'xy_(a),and v(x_) are engineering elastic constants for a unidirectional

composite when load and fibers are both aligned along the x-axis. With the integral in

Eq. (10) evaluated for f_ ofF_ 1. (Sb), the knockdown factor 11(a) is just

_l(a) = (_x_--x a) (12a)

2[E_ ) 2(1 + v(a)]] ) 1=(1 +(_ _,j
(smallo¢). (12b)

? Detailed simulations of load distributions confirm the validity of assuming uniform stress along an
individual wavy tow, rather than uniform strain (Section 4.4). However, the differences found in waviness

effects when Eq. (I0) is based on isostrain conditions in a wavy tow are minor (zero to order _2). Appendix
A of [23] also demonstrated that the highly anisotropic tows in typical polymer composites deflect laterally
by shear rather than bending; and this is a much more important distinction. Thus the analysis preferred
here differs from that appropriate to isotropie wavy layers in a soft matrix [31].
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The term multiplying _ in Eq. (12b) vanishes ff the domain a is isotropic. It takes a

value near 40 for the composites studied here. Equations (1 lb) and (12b) fall within 5%

of Eqs. (5b), (10), and (11a) for a t < 10% For smaller angles, Eq. (12b) can be further

simplified to

rl(Ct)_.1 -a_ IE-_ 2_i + V(a)II

_O(_) - xy ,j"

(12c)

Waviness knockdown factors computed for stuffers and fillers without the

approximations ofEq. (12b) or (12c) are listed in Table 3. The stiffness loss is 2-20% for

stuffers and 5-50% for fillers.

Waviness knockdowns for stuffers and fillers are incorporated in the estimates for

3D woven composite properties by substituting Ex (ct) --_ rl(a)Ex(a) and Vxy(ct)

1](a)Vxy(a) in the stuffer and filler domains in the Orientation Averaging Model. The latter

substitution preserves the symmetry relations between Young's moduli and Poisson's

ratios. The resulting composite predictions are listed in Table 4 under the heading

"OAW". The agreement with experimental data is significantly improved. In many eases,

the remanent discrepancy between prediction and experiment is less than the scatter in the

experimental data and in data reported by different laboratories for the same materials.

Nevertheless, in many eases, the predicted in-plane Young's moduli remain higher than

the experimentaldata.

The Influence of Warp Weaver Crimp

Since warp weaver crimp is so severe, a meaningful lower bound to its effect can

be found by the extreme assumption that the axial modulus E(xw) of the warp weavers is

reduced to the value _) of their transverse modulus. Symmetry relations are preserved

by the substitution v(xy) --->v(_ ). Some composite elastic constants predicted with these

conditions are compared in Table 6 with predictions for warp weavers of ideal geometry.

Young's modulus E1 is only weakly affected by weaver crimp, as is E2 (not shown in

Table 6). The through-thickness modulus E3, Poisson's ratio v13, and the shear modulus

G31 are more substantially affected, falling to values near those expected for a 2D

laminate. Other Poisson's ratios and shear moduli are insignificantly affected.
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Table 6. Effects of Warp Weaver Crimp

Composite Label E1 (GPa) E3 (GPa)
OAW a OAWW b OAW a OAWW b

l-L-1 36.8 35.7 9.0 5.6
/-I.-2 29.4 28.9 6.9 5.9

l-T-1 41.3 40.2 9.4 6.7
l-T-2 37.1 36.8 7.0 6.2

1-O 45.5 42.1 13.7 6.9

h-L-1 88.6 87.6 12.1 9.7
h-L-I 77.6 77.0 10.2 8.8
h-T-1 87.0 85.7 12.8 9.6
h-T-1 82.4 81.6 11.2 9.3
h-T-1 93.0 90.0 17.3 9.6
h-O-2 82.5 80.0 20.4 9.2

Composite Label Vl 3 G31 (GPa)

OAW a OAWW b OAW a OAWW b

l-L-1 0.607 0.323 6.0 2.2
l-L-2 0.436 0.320 3.2 2.3
l-T- 1 0.527 0.306 5.6 2.6
l-T-2 0.406 0.325 3.1 2.4

l-O 0.173 0.310 2.7 2.7

h-L-1 0.450 0.299 7.1 4.7

h-L-1 0.411 0.313 5.3 4.0
h-T-1 0.483 0.294 7.8 4.6
h-T- 1 0.437 0.311 6.2 4.3
h-T-1 0.189 0.317 4.7 4.7
h-O-2 0.155 0.308 4.4 4.4

aOrientation Averaging Model amended for out-of-plane waviness of stuffers and
fdlers

bas for OAW but with extreme softening of warp weavers

Bending

For many purposes, it will be accurate enough to represent any of the 3D woven

composites studied here as orthotropic and homogeneous. However, in bending

applications, the coarseness of typical tows suggests that account must be taken of the

sequence in which stuffers and fillers appear through the thickness (e.g. Fig. 2). This
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effect can be measured as the ratio Zj 0=1, 2) of the flexural rigidity estimated for the

actual layer sequence to that estimated under the assumption of through-thickness

homogeneity. The required ratio follows easily from the distribution of layer stiffnesses

and stresses in pure bending. 1 For a symmetric through-thickness sequence and bending

about the xj-axis 0=1,2), the bending moment Mj is given by

(13)

Ignoring the modest effect of transverse stresses, the ratio Zj is well approximated by

_4 n,,£, (u_-ui3q)EJ _) i_Ej (14a)
i=l

n.+l

= Z [(u_- (ui_l_]E_/E j (j=l,2) (14b)
i=l t 1/2 #J

where Ej is Young's modulus in direction xj for the composite; and _a0 is Young's

modulus in direction xj for the individual layer (or tow domain) ai. The moduli _a0 are

either the axial or transverse Young's modulus predicted for a unidirectional composite;

the former knocked down by the factor 0 (0`) to allow for tow waviness.

Values computed for Zj by Eq. (14) are summarized for all the composites in

Table 7. Since fillers are always the outermost plies, Z2 exceeds unity (bending about the

Xl - axis) while Z1 is less than unity (bending about the x2 - axis).

Given _1 and _C2, the flexural rigidi-ties Ell and El2 that Should be u_t0 predict

the response to pure bending under the assumption that the composite is homogeneous

can be esthnated from the in-plane moduli E1 and E2. Results for Ell are compared in

Table 7 to values deduced from the linear portions of bending experiments. The

predictions are consistently higher than the available data. The discrepancy can be

attributed to overestimates in El, since the proportional discrepancies in E1 (Table 4) and

Ell (Table 7) are nearly the same. Thus, the effects of inhomogeneity are well estimated

by Eq. (14).

1The ratio Xj is to be applied as a correction factor to the OAM, which already contains estimates of the
effects of warp weavers. The influence of warp weavers on the correction factor itself must be negligible.
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Composite
Label

Table 7. Flexuml Rigidity

Factor for Inhomogeneity Flexural Rigidity

F.f:fMPa)

;_t a X2 b expt. prediction c

l-L- 1 0.79 1.19 20 29
l-L-2 0.78 1.15 - 23
l-T-1 0.78 1.17 - 32
l-T-2 0.79 1.18 - 29
l-O 0.78 1.17 - 35

h-L-1 0.85 1.24 72 75
h-L-2 0.89 1.14 69
h-T-1 0.85 1.25 63 74
h-T-2 0.89 1.16 63 73
h-O-1 0.84 1.25 60 78
h-O-2 0.89 1.16 73

abending about the x2-axis

bbending about the Xl-aXiS

eEquation (14)

3.3 Discussion of Macroscopic Elastic Constants

3.3.1 In-Plane Properties

The in-plane elastic properties are essentially those of a 0/90 ° laminate, with

relatively minor modifications due to the through-thickness reinforcement and tow

irregularity. Thus Poisson's ratio v12 is very small, because the fillers resist transverse

contraction when loading is parallel to the stuffers; and v12 and the in-plane Young's

moduli E1 and E2 are dominated by the axial stiffness of the stuffers and fillers.

Consequently, using rules of mixtures rather than Hashin's model for tow domain

properties leads to very similar predictions of the composite elastic constants El, E2, and

v12 (Appendix B). On the other hand, the in-plane shear modulus O12 is matrix

dominated: it is very nearly equal to the axial shear modulus predicted for the stuffers and

fillers. The rule of mixtures leads to an underestimate for G12 (Appendix B).

The in-plane elastic constants El, E2, and v12 are influenced significantly by

waviness in stuffers and Idlers, but negligibly by waviness in the warp weavers.
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3.3.2 Other Elastic Constants

The orientation of the warp weavers and any crimp in them is much more

significant for the through-thickness composite modulus E3, Poisson's ratios v13 and v23,

and the shear modulus G31. As tow orientations would suggest, the highest values of E3

are found for orthogonal interlock weaves. Similarly, v13 and v23 arc less than Poisson's

ratio for the matrix for orthogonal interlock weaves, but are quite high in angle interlock

weaves. The warp weavers resist through-thickness contraction in the former architecture,

but abet it in the latter. Of the shear moduli, only G3 ] depends on the warp weavers: no

axial strains arise in any segments of warp weavers under shear strains 712 or 723-

3.3.3 Unresolved Discrepancies Between Theory and Experiment

When out-of-plane stuffer and filler waviness and warp weaver crimp are

accounted for, predicted and measured composite elastic constants agree in most cases to

within experimental error. However, the tendency is still for predicted in-plane Young's

moduli to be too high, especially for composites l-T-1, l-0, and h-O-2; while experiment

and theory occasionally disagree significantly in either direction for the through thickness

modulus E3 and Poisson's ratio v13.

The remaining overestimate of in-plane moduli is very likely to arise from

unaccounted irregularity in stuffers and fillers. Only out-of-plane waviness was measured

and modeled, yet other forms of distortions can also be found. Many consist of

inconstancy in the aspect ratios of tow cross-sections. In some composites, especially

layer-to-layer angle interlocks, this was manifested as tapering, oscillating skirts along

the sides of stuffers or fillers, giving them a shape reminiscent of long flatworms. In all

composites, aspect ratios are also disrupted by "pinching," i.e., locations where a tow is

flattened by lateral loads during processing. Other possible irregularities include yarn

twist, which is assumed zero in accord with the weaver's specifications; and in-plane

waviness. Unfortunately, it is virtually impossible to measure all such irregularities, or

even to identify them clearly in specimens. Indeed there will very likely always be some

uncertainty in the degree of irregularity existing in textile composites. It is consequently

unrealistic to expect to predict even in-plane elastic constants to within better than - 10%.

While a 10% uncertainty will usually be deemed quite acceptable in a prediction

based on constituent properties, the situation for out-of-plane properties is more
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challenging.Three distinct problems exist. (i) The isostrain assumption is wrong in the

through-thickness direction, as clearly borne out by moir6 data such as Fig. 9b. Model

calculations that allow a natural partitioning of loads between warp weavers and the rest

of the composite appear in Section 4. They demonstrate that the isostrain assumption

exaggerates the influence of warp weavers, by not allowing the rest of the composite to

relax around them. (ii) The volume fraction, fwV, of warp weavers depends on the crimp

factor, Cw, of Table 1 via Eq. (1). The crimp factor can be measured quite well on

average, but it may fluctuate throughout the material to a degree determined by the

consistency of the weaving process. The local values of Cw are the most likely cause of

measured values of E3 being higher than predictions in several instances in Table 4.

(iii) Waviness and other distortions are relatively severe for warp weavers. Knockdowns

of the effective axial stiffness of warp weavers to values near the transverse tow stiffness

are implied in several cases studied.

Unfortunately, it is difficult even to categorize the forms of distortion exhibited by

warp weavers, let alone to measure them all. However, rough estimates show that the

effects of warp weaver irregularity on E3, v13, and G31 are of similar magnitude to the

effects of relaxing the isostrain condition. Thus, when through-thickness property

estimates are required in composite design, the simple Orientation Averaging Model with

isostrain conditions might just as well be used, with suitably stated levels of uncertainty.

Table 4 suggests that an uncertainty of- 20% is typical for current 3D woven

composites.
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4. Details of Stress Distributions via the Binary Model

In Section 3, it was shown that the macroscopic elastic properties of fiat panels of

woven composites with three-dimensional (3D) reinforcement can be successfully

modeled by simply formulated, computationally trivial models. The term macroscopic

here refers to a length scale k that is much larger than the characteristic dimensions of the

reinforcement; e.g. center-to-center tow spacings. In typical woven or braided

composites, _ - 1-10 ram. For macroscopic properties, the influence of the reinforcement

architecture can be dealt with by orientation averaging, a method with a long history

[18-21,32]. Further, if the through-thickness fibers are much less numerous than the in-

plane fibers, as preferred in many skin or sheet applications [33,34], the woven

composites behave maeroscopically in the elastic regime essentially as laminates.

However, some important problems concerning 3D composites in the elastic

regime cannot be solved by simple models. One such problem is the question of how

irregularity in tow alignment might affect the distribution of loads throughout the

composite. Random tow waviness will cause soft spots where tows are highly misaligned.

Neighboring tows will be excessively stressed. The question then arises of the extent to

which uneven load distribution can affect the onset of tow failure.

A second problem concerns the treatment of reinforcement architectures that are

much more complicated than those in the fiat panels studied here. Indeed, one of the great

promises of woven and braided textiles is the formation of integral structures to near net

shape. Typical examples from weaving technology include hollow box beams, in which

the upper and lower faces are rich in longitudinal tows for tensile and compressive

strength, while the side faces contain mainly 5:45 ° tows for shear [35]; and integrally

woven skin/stiffener panels for airframes (e.g., [36]). In such structures, tows pass

continuously from one part to another, e.g. from face to face in the box beam or fxom skin

to stiffener in the airframe panel. At the critical junctions between parts, tows follow

complicated, interlocking paths with no semblance of laminae. The isostrain assumption

underlying the orientation averaging method may be invalid here. Nor can the material be

modeled as elastically homogeneous. The scale over which critical stress variations occur

is no longer significantly greater than the tow separation. A new model is needed to

predict the stress distributions in all tows in such junctions and in other regions of

geometrical complexity.
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An appropriate model was formulated in a prior contract [37] to deal not only

with such complex problems in the elastic regime but also with the problems of damage

tolerance, localization/nonlocalization transitions, and fatigue damage accumulation.

Based on extensive, detailed observations of failure mechanisms in [12,13,14], a new

model containing two types of constitutive dements, called the "Binary Model," was

proposed. A numerical solution based on the finite element method was outlined.

The Binary Model contains various parameters describing the physical properties

of fibers and resin and the reinforcement geometry, both ideal and irregular. Some

parameters may be specified a priori, using independently acquired data; others must be

evaluated by calibrating the Binary Model against experimental data. This section deals

in detail with the calibration process for 3D woven composites in the elastic regime. It

also deals with the statistics of load distribution in randomly wavy tows. The effect of

load unevenness on first tow failure is assessed.

The calibration procedure is based on the flat panel interlock weaves studied

under this contract. All calculations presented here are for those eleven composites,

which are identified by the composite labels shown in Table 1.

4.1. The Binary Model of Interlock Weaves

In the Binary Model, the axial properties of tows are represented by two-noded

line elements, while the transverse stiffness, shear stiffness, and Poisson's effects of the

composite are represented by solid "effective medium" elements. The element size is

chosen to be the largest that preserves a one-to-one correspondence between the

positioning of tows in the composite and in the model; the topology of the tow pattern is

preserved with the minimum degrees of freedom. Calculations with the Binary Model

usually involve hundreds or thousands of effective medium and tow elements. When

dealing with realistic, irregular tow geometry, the volume modeled is usually

considerably greater than the minimum repeating unit or "unit cell" from which the ideal

tow geometry could be generated by translation operations.

A typical fragment of a composite as it is represented by the Binary Model is

shown in Fig. 10. The example illustrated is an orthogonal interlock weave. While the

composite remains elastic, the nodes of stuffer and filler tow elements coincide with those

of the effective medium elements, indicated in Figure 10 by black dots. In modeling
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progressive failure, tow nodes near a site of tow failure are allowed to displace relative to

effective medium nodes to mimic tow sliding [37].

The warp weavers in an interlock weave are modeled here very simply. Warp

weaver tow elements are coupled to the rest of the composite solely via springs that

connect them to fillers (Fig. 10). The coupling springs allow relative displacement in the

x3 direction only.

Node patterns have been generated for all eleven angle interlock weaves.

Complete details are provided in Appendix A. The node patterns can be regarded as

defining the weave architecture. They reflect the specifications provided by the

manufacturer.

SC.1011¢_ 0_2094

fillers :
stuffers

:ive medium
element

Figure 10. Modeling elements, dimensions, and coordinate system for the Binary

Model. The illustrative ease is a fragment of a through-the-thickness

angle interlock composite.

The mechanical response of the assemblage of effective medium elements, tow

elements, and springs exemplified by Fig. 10 is computed by the finite element method.

The virtual work principle can be expressed as
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y: + ZQ. = dS (15)

where e and _ are the strain and stress tensors of the effective medium and V is its

volume. The second term on the left hand side of Equation (15) is the virtual work

pertaining to all the tow elements and springs. The vector 1 denotes the length and

orientation of a tow or spring element, while Q denotes the force acting along it. The

displacements _ are given on Su and the tractions T are given on ST, where Su and S T are

subregions of the external surface S satisfying Sun ST = O and Su u ST = S.

In the current formulation, all effective medium elements are represented as eight

noded isoparametric solid elements. An updated Lagrangian formulation allows effective

treatment of the large deformations expected in later modeling of composite failure.

Details of the updated Lagrangian formulation will be given when that work is presented.

4.1.1 Composite Dimensions for Modeling

In modeling macroscopic dastic properties, it is paramount to get the right count

of fibers in each orientation. In Section 2, it was argued that the total count is estimated

most reliably from the total fiber volume fraction, V, _d the proportions by volume fs, ff,

and fw of all fibers that belong to stuffers, fillers, and warp weavers (fs+ ff+ fw = 1). The

fraction V can be measured experimentally. The proportions fs, ff, and fw are assumed not

to change during consolidation and are calculated from the weaver's specifications.

Details of these calculations and values for V, fs, ff, and fw for the subject composites are

to be found in Section 2 and Tables 1 and 2.

For predicting macroscopic elastic properties by orientation averaging methods,

the only information required about tow spacing is the distribution of stuffers and fillers

through the thickness, which affects the flexural rigidity. However, when composites are

analyzed by the Binary Model, the average tow spacings in all directions must be

specified. The required dimensions al, a2, a3, and a'3 are illustrated in Fig. 10. They

define the separations of the centers of gravity of tows in a composite of ideal geometry.

The in-plane separations must be consistent with the measured total volume fraction V

and the fractions fs and ff. Thus
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= ns + 1 (16a)
al ffVy_ft

and

n_ (16b)
a2 fsVyspst

where ns is the number of layers of stuffers, Ys and yf are the yields (length per unit mass)

of the stuffer and filler yams, Ps and Of are densities of the fibers in the stuffers and fillers

(both 1800 kg/m 3 for AS4 graphite), and t is the measured composite thickness. The

through-thickness dimensions a3 and a'3 fix the separations of layers of fillers or stuffers,

which are important mainly in bending applications. They are determined via estimates of

the average thicknesses ts and tf of stuffers and fillers in the through-thickness direction,

where tf = 2a'3 and tf + ts = 2a3. If the stuffers and fillers are compacted in processing to

equal degrees, then

ts = yfe (17a)
tf YsP

Where e and p are the numbers of ends (stuffers) or picks (fillers) per unit length

measured normal to the tow direction; while

(ns + 1) tf + nsts = t (17b)

Hence,

a3 = t PYs + eyf
2 (ns + 1) PYs + nseyf

(18a)

and

a'3 = t PYs
2 (ns + 1) PYs + nseyf

(18b)

For the eleven composites studied in here, values of all the quantities appearing

on the fight hand sides of Eqs. (16) and (18) have been tabulated in Section 2. The

resulting values of al, a2, a3, and a'3 are listed here in Table 8.
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The separations of stuffers and fillers and the composite thickness are the only

spatial scales required in modeling the eleven subject composites: the warp weavers are

assigned loci midway between columns of stuffers. See Appendix A.

4.1.2 Elastic Constants

The elastic constants of tow and effective medium dements can be estimated from

the properties of individual tows, which in turn can be modeled as unidirectional

composites. Suitable approximations for the elastic constants of unidirectional

composites are available in the literature. Following assessment of their merits in Section

3, two models will be used here: Hashin's model [26], which alone deals adequately with

the pronounced anisotropy of graphite fibers; and rules of mixtures, which are the

simplest model available and treat the fibers as isotropic. Since unidirectional material is

transversely isotropic, the models provide estimates for five independent elastic

constants. In the local coordinate system (x, y, z), with the x-axis the fiber direction in

any tow, the constants may be chosen to be Young's modulus E_UD) and Poisson's ratio

vxy(_) for loading along the fibers, the axial shear modulus Gxy(_D), and the shear modulus

GyzO_D) and Poisson's ratio Vyz(_D) in planes of isotropy. The superscript UD signifies

"unidirectional composite."

Effective Medium Elements

When the axial stiffness of tows has been removed to tow elements in the Binary

Model, it remains for the effective medium elements to represent transverse stiffness,

Poisson's effect, and shear stiffness. The interlock weaves of Table 9 are dominated in

their elastic properties by the stuffers and f'fliers, which behave elastically much like a

00/90 ° laminate (Section 3). For such reinforcement geometry, the effective medium

elements account almost entirely for the in-plane composite shear modulus G12 and for a

large pan of the through-thickness composite modulus E3 and the composite Poisson's

ratios v 13 and v23. Other composite elastic constants are determined by the effective

medium elements and tow elements acting in combination.

Therefore, effective medium properties should be selected to give good values for

the composite elastic constants G12, E3, v13, and v23. Ignoring warp weavers, a typical

effective medium element contains one region occupied by pan of a stuffer and another
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occupiedby pan of a f'dlcr (Fig. II). Since the fibers in stuffcrs and fillers lie parallel to

the xl-axis or the x2-axis, the in-plane composite shear modulus, GI2, should bc very

,-,_(UD).computed for the unidirectional composite. Thusnear the axial shear modulus, ,Oxy ,

G_) = Gxy_D) , (19)

with the superscript m denoting the effective medium. Through-thickness loads applied to

the composite act transversely to the stuffers and fillers. Thus

=  COD) (20)

filler

• . 3** ................
•t ..................

t stuffer

Figure 11. A typical effective medium element contains portions of filler and

stuffers tows, within which the fiber direction is as shown.

Poisson's effect for an element such as Fig. 11 might be thought to be more complex.

However, there is only a modest difference between Vxy(_) and v_JD_); and Poisson's ratios

v13 and v23 in the composite are influenced to some extent by the tow elements.

Therefore, it is expedient and adequate simply to assign
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V_) --V_) = v_(_D) . (21)

For an orthotropic body assembled from elements such as that in Fig. 11, there are

nine independent elastic constants. However, most of this symmetry is imposed on the

scale of the composite by the tow elements. It is superfluous to require orthotropy in the

effective medium. Equations (19) to (21) can be implemented instead by assuming that

the effective medium is transversely isotropic, filling out the remaining degrees of

freedom by the assignments

v_ )= vxy(_ ) (22)

and G_ )= G_) = Gxy(_ ) ; (23)

with E_ m) F_2m) _1 -a- • (m)i f'-(m)= = --"12 /"12 (24)

Whether Eqs. (19) to (24) are optimal should be tested by comparing the

predictions of the Binary Model against experiment. This will be done below. Given the

dominant role of tow elements, one might guess in advance that an even simpler approach

might suffice. Therefore, assignments for an isotropic effective medium following rules

of mixtures were also assessed, viz.

(25)

v_) ,(m)_,(m)= v OJI))= "31 -- "23 (26)

When irregular geometry is modeled, effective medium elements are no longer

perfect cuboids. Nevertheless, the assignments of Eqs. (19) to (26) are retained, with

subscripts referring to the global coordinate system.

Tow Elements

Tow elements, being one dimensional, are defined in the Binary Model by a

spring constant, k_):

F (i) = k_ ) £0) (or = s, f, or w; i = 1....... N) (27)
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whereo_= s, f, or w denotes stuffer, filler, or warp weaver, the superscript i refers to one

of a total of N tow elements; and F and e are force and strain. For an ideal geometry, 1¢_)

is independent of i. In the presence of tow irregularity, k_ ) may be a random variable.

Table 8. Tow Spacing Dimensions

Composite

Label Architecture a] (ram) a2 (ram) a3 (ram) a'3 (ram)

(a) Lightly Compacted

l-L- 1 Layer-to-Layer 2.31 2.01 1.41 0.66

l-L-2 Angle Interlock 1.57 1.81 1.37 0.73

I-T-1 Through-the Thickness 1.78 1.88 1.13 0.58

l-T-2 Angle Interlock 1.96 1.91 1.08 0.53

I-O Orthogonal Interlock 1.91 2.07 0.97 0.51

(b) Heavily Compacted

h-L-1 Layer-to-Layer 2.06 1.91 0.65 0.21

h-L-2 Angle Interlock 1.30 1.45 0.49 0.18

Through-the Thickness 2.10

Angle Interlock 1.35

Orthogonal Interlock 2.00

Orthogonal Interlock 1.39

1.95 0.66 0.21

1.50 0.45 0.16

1.86 0.67 0.21

1.54 0.46 0.17

The stiffnesses ks and kf are prescribed so as to ensure reasonable conwibutions of

stuffers and fillers to the composite Young's moduli, E1 and E2. Loads along the Xl - axis

are aligned with the stuffers, transverse to the fillers, and either transverse or at

intermediate angles to the warp weavers. Thus to a good approximation
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El_- fs E_(UD) + (1-fs) Ey(Up) . (28)

Now there arc ns stuffer tow elements through the thickness, t, of the composite; and l/a2

per unit length in the direction x 2. The stiffness in the x 1 direction in the Binary Model is

the sum of the effects of the stuffer tow elements and the effective medium elements.

Since the latter fill all space, ks must satisfy

ns ks + E_m)= fsEx(Up) + (1-fs) _D) (29a)
a2t

Similarly (30)

a2t fs COD)
or ks = _(E_ . _.JD)) (29b)

ns+ 1

These expressions were derived by ascribing the fractions fs and ff of the whole

composite volume to stuffers and fillers. The correct total fiber count in each class of tow

will be preserved as long as the unidirectional composite properties appearing in Eqs.

(29) and (30) are evaluated for a composite of volume fraction equal to V, the measured

total fiber volume fraction.

The multiplicativc factors on the right hand sides of Eqs. (29b) and (30) can be

viewed as estimates of the cross-sectional area of a single stuffer or filler. The subtraction

of the term Ey(UD) multiplied by this area avoids double counting of the contribution of the

effective medium, which occupies all space. This interpretation suggests the alternative

prescription for 1_ (o_ = s, f, or w)

(31)

where Do_ is the cross-sectional area estimated by any means. Figure 10 suggests writing

tsa2 and tfal for the cross-sectional areas of stuffers and fillers, leading to

ks = tsa2 (Ex(tin'- _e_D,) (32a)

and kf = tfal (E(xUD)- _JD)) . (32b)
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Because of the way various quantifies have been defined, the total fractions of the

composite volume occupied by stuffers and fillers with cross-sections tsa2 and tfal are

fs/(1-fw) and ff/(1-fw). Therefore, if Eq. (31) is preferred, the unidirectional composite

properties should be evaluated for a composite of volume fraction (1-fw)V, to conserve

total fiber counts. With this adjustment, the difference between Eq. (31) and Eqs. (29) and

(30) is very small.

The tow cross-sectional area can also be estimated from the fiber volume fraction,

the tow yield, and the fiber density fa for the fibers in tows of kind tx (a = f, s, or w):

Da = .__.L_ (33)
yctVpa

This estimate in conjunction with Eq. (31) is the most practical if the tows are not

nominally straight, i.e., for warp weavers. To conserve total fiber counts, the same fiber

volume fraction must be used in Eq. (33) and in calculating the unidirectional composite

properties in Eq. (31). The measured total fiber volume fraction V is the obvious choice.

Coupling Spring Constants

The stiffness, kwf, of the coupling springs between fillers and warp weavers (Fig.

10) is defined as

kwf = alhw_ JD) , (34)

where hw is the width of the warp weaver where it comes into contact with the filler, and

alhw approximates the contact area. Most composite properties are very insensitive to the

value of kwf (see below). Therefore, a crude but effective estimate of hw is

__L__
hw = v^/ywVpw (35)

Similarly, the unidirectional composite modulus Eyo-rD)used in Eq. (34) could be that

computed for either filler or warp weaver. Since Ey0JD)is matrix dominated, the end effect

on composite properties is barely detectable.
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4.2. Calibration of the Binary Model

4.2.1 Ideal Geometry

The effectiveness of the Binary Model was assessed by comparing its predictions

of macroscopic elastic constants with experiment and with the predictions of the

Orientation Averaging Model of Section 3. This was done iru'st for ideal geometry.

Macroscopic properties were computed with the Binary Model for a simulated slab of

material whose dimensions were somewhat greater than the largest period of any of the

tow patterns shown in Appendix A. The slab contained twelve effective medium elements

in the Xl direction, 10 in the x2 direction, and 2(ns +1) in the x 3 direction. Thus it also

contained 60 ns stuffer dements representing 5ns stuffers and 130 (ns + 1) filler elements

representing 13 (ns + 1) f'fllers. The number of warp weaver elements depended on the

architecture, as indicated by Table A. 1 and Figure A.2. Because warp weavers only have

nodes where they turn, many warp weavers do not have a node on one or both end plane.

The load (or force) in any partial warp weaver clement left hanging in such cases was

equated to that in the same tow at the other end plane. 1 This device maintains reasonable

force balance at all warp weaver nodes.

Uniaxial tension or shear loads were imposed by requiring one component of

displacement to be uniform on one pair of opposing sides of the slab. All other boundary

displacements were allowed to relax to make all other boundary stresses zero. Young's

moduli and shear moduli follow trivially from this procedure. However, Poisson's effect

is more complex. When uniaxial tension is applied in the stuffer direction, the lateral

boundaries of the slab displace nonuniformly. On the sides normal to the fillers, the

magnitude of the displacements is much larger at nodes which are not shared by fillers

than at nodes which are. The fillers resist lateral contraction very effectively. This

boundary effect influenced lateral displacement even in the middle of the slab. Poisson's

ratio v12 should in fact be calculated by constraining the sides of the slab normal to the

fillers to displace as planes when the average normal stress is zero. Since the fillers

would dominate the displacement in such a calculation, v12 was defined by the

displacement of the nodes shared by fillers when the sides were locally stress-free.

1 This periodic condition applies to some warp weavers only. The simulated slab overall is not periodic.

43



Poisson'sratio v13, on the other hand, involves lateral displacements in the

thickness direction. These are nonuniform in reality. For comparison with the orientation

averaging model, v 13 was defined by averaging the displacements on the upper and lower

surfaces of the slab.

Calculations were performed for all eleven architectures of Table 8. Fiber and

resin properties used were those of Table 5; Hashin's model was used to estimate the

domain elastic constants Exf°D), etc.; effective medium elements were defined by Eqs.

(20)-(25); and tow elements were defined by Eqs. (29) and (30) for stuffers and fillers and

Eqs. (31) and (33) for warp weavers.

Selected composite constants calculated by the Binary Model and the Orientation

Averaging Model (from Table 4) are compared with experimental data in Table 9.

The in-plane constants El, E2, and v12 predicted by the two models are in close

agreement. The slight differences can be attributed to the larger differences that arise in

through-thickness properties. The shear modulus G12 is not shown in Table 9: it remains

_(m) and to the value found in the Orientation Averaging Model (seeidentical to vxy

Table 4).

Experimental values for in-plane Young's moduli tend to be significantly lower

than predicted by either model. This is due to tow Waviness. Estimates of waviness

effects have already been incorporated in the Orientation Averaging Model, and bring

predictions reasonably close to data (Section 3). Waviness effects in the Binary Model are

dealt with below.

The through-thickness modulus E3 is generally lower in the Binary Model than in

the Ori'en tion Avera_gip gM el.  ference can  explained by considering the

swains in warp weavers, which are the main load-bearing tows in the direction x3. In the

Binary Model, the axial strains in the warp weavers can be reduced by shearing strains

between warp weavers and the softer, surrounding composite, which lowers E3. In

orientation averaging, isostrain conditions are assumed: the strain in the warp weavers

must remain the same as that in the surrounding composite. This leads to a stiffer

structure. The predictions of the Binary Model should be regarded in principle as superior

to those of the Orientation Averaging Model.
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Table 9. Comparison of Orientation Averaging and Binary Models

Composite E1 (GPa)
Label

Expt OA a BM b

l-L-1 30d 36.8 36.0

l-L-2 29 34.9 36.3

l-T- 1 27 47.3 46.4

/-T-2 39 43.5 44.8

/43 30 51.9 48.9

h-L- 1 85 91.5 92.0

h-L-2 80 81.2 81.2

h-T-1 79 88.6 88.7

h-T-2 72 85.1 85.3

h-O-1 88 93.1 90.2

h-O-2 69 83.8 81.3

Composite v12
Label

Expt OA a BM b

l-L- 1 0.02 0.023 0.029

l-L-2 0.11 0.027 0.022

l-T- 1 0.05 0.020 0.024

l-T-2 0.21 0.027 0.025

l-O 0.05 0.034 0.027

h-L- 1 0.06 0.034 0.038

h-L-2 0.13 0.035 0.037

h-T-1 0.05 0.033 0.037

h-T-2 0.10 0.033 0.036

h-O-1 0.06 0.051 0.040

h-O-2 0.07 0.052 0.043

r_2(GPa) E3 (GPa)

Expt OAa BM b Expt OA a BM b

38.7 38.5 6 9.0 6.8

47.6 50.1 6 7.0 6.7

59.5 59.4 8 9.4 8.4

51.6 53_5 8 7.0 7.8

46 63.9 63.7 7 13.7 9.4

44 56.2 56.3 16 12.1 11.5

42 55.0 55.1 14 10.2 10.2

43 54.4 54.5 14 12.8 11.5

46 57.6 57.8 14 111 11.3

40 56.4 56.3 15 17.3 12.5

42 55.9 55.9 22 20.4 13.8

v13 G31 (GPa)

Expt OA a BM b OAWW c OA a BM b

0.22 0.607 0.481 0.323 6.0 2.1

0.50 0.457 0.476 0.320 3.2 1.9

0.38 0.541 0.477 0.306 5.6 2.6

0.37 0.428 0.493 0.325 3.1 2.4

0.49 0.184 0.428 0.310 2.7 2.5

0.456 0.463 0.299 7.1 3.8

0.45 0.425 0.463 0.313 5.3 3.8

0.486 0.480 0.294 7.8 4.2

0.443 0.48 0.311 6.2 3.3

0.190 0.407 0.317 4.7 4.2

0.157 0.375 0.308 4.4 4.0

a Orientation Averaging Model of [1].

b Binary Model (engineering strain = 0.001).

c Orientation Averaging Model of [1] with highly softened warp weavers.

d Measurement scatter typically - 10% [1].

OAWW c

5.6

5.9

6.7

6.3

6.9

9.7

8.9

9.6

9.3

9.6

9.2

OAWW c

2.2

2.3

2.6

2.4

2.7

4.7

4.0

4.6

4.3

4.7

4.4
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Experimental values of E3 are sometimes lower than the predictions of even the

Binary Model. This is the effect of warp weaver distortion, which is often quite severe

(Section 2). Lower limits to E3 can be found by reducing the axial modulus of warp

weavers to the transverse modulus. The effects in the Orientation Averaging Model are

listed in Table 9 under the heading OAWW (taken directly from Table 6). Similar

numbers can be obtained in the Binary Model by setting the axial modulus of warp

weavers to zero; in which ease E3 for the composite becomes identical to _aJD) via Eq.

(3). Unfortunately, as discussed in Section 3, it is exceedingly difficult even to measure

all forms of warp weaver distortion in current 3D interlock weaves.

Other experimental values of E3 are higher then predicted values. Some of this

discrepancy might be experimental error. The through-thickness modulus is relatively

difficult to measure. It is also influenced more strongly by the volume fraction of warp

weavers, which is more prone to measurement error than the volume fractions of stuffers

or f'tilers. Warp weaver volume fractions depend on a "crimp" or "take-up" factor, which

defines the total length of yarn in a unit length of composite. For warp weavers, the crimp

factor is large (~ 1-3 for angle interlock and ~ 4 for orthogonal interlock composites -

Table 1) and probably subject to substantial variance over lengths comparable to the size

of specimens used in this work. Variations in the warp weaver crimp factor would be

caused by inconstancy of tension or beating up during weaving. The difficult of

measuring warp weaver distortions and crimp factors preempt more accurate agreement

of experiment and theory on the value of E3.

Some significant discrepancies between the two models for v13 and G31 can also

be accounted for by expected differences in internal load distribution. For example, the

Orientation Averaging Model gives high values for v13 for composites I-L-1 and/-T-I,

and low values for composites l-0, h-0-1, and h-0-2. The first two values are high because

of a trellis or scissor effect: the warp weavers lie at 45 ° to the load axis. The last three are

low because the warp weavers lie parallel to the x3 axis and strongly resist through-

thickness contraction. In the Binary Model, both of these effects are moderated by

nonuniform strain distributions. The values of v13 tend away from the exlremes implied

by the warp weaver geometry and back towards the intermediate values expected for the

rest of composite. The same principle is clearly at work in the shear modulus G31.

Agreement of the Binary Model with experimental values of v13 is fair. Discrepancies

can be attributed largely to warp weaver distortion.
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In summary, comparison with experiment shows that the Binary Model predicts

the in-plane macroscopic elastic properties of 3D woven sheets with acceptable accuracy

without the use of adjustable parameters. Comparison with measured out-of-plane elastic

constants is made more difficult by warp weaver distortion, which is often severe and

difficult to measure, and likely variance in the warp weaver volume fraction. With this

caveat, predictions of out-of-plane constants are also very reasonable.

4.2.2 The Effects of Effective Medium and Coupling Spring Assignments

For graphite fibers in epoxy resin at volume fractions typical of textile

composites, Hashin's formulae accounting for fiber anisotropy and rules of mixtures

assuming isotropic fibers give very similar values for the single tow properties _OD), etc.

The sole exception is the axial shear modulus, Gtxy°D),- which the rule of mixtures

underestimates by approximately 30%. Since most composite properties in the Binary

Model are dominated by tow elements, which reflect the axial Young's modulus of tows,

the simplified prescriptions of Eq. (26) for the effective medium, based on rules of

mixtures and assumed isotropy in the effective medium, ought to work quite well. To

bear this out, Binary Model predictions based on Eq. (26) were compared with those

based on Eqs. (20)-(25), i.e. those listed in Table 9. Of the engineering elastic constants,

all Young's moduli and Poisson's ratios differed by a few per cent at most, differences

that are well beneath experimental resolution. The composite shear moduli differed by

10-30%. The in-plane modulus G12 is the most affected, since it alone is entirely

determined by the effective medium. In a reinforcement architecture with in-plane tows

aligned in more than two directions, G12 would also be dominated by the axial properties

of tows and crude treatment of the effective medium would be even more accurate.

The role of the coupling spring constant kwf was tested by arbitrarily doubling its

value over that prescribed by Eq. (34). The changes in all composite engineering elastic

constants were insignificant.

Thus in the Binary Model, the most important consideration by far is the proper

definition of the elastic properties of the tow elements. In other words, macroscopic

elastic properties of 3D weaves are dominated by the axial stiffness of tows. The details

of the prescription of matrix dominated elements, i.e. the effective medium elements and

coupling springs, axe relatively unimportant. The same should be true of other
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architectures, including 2D and 3D braids, 2D weaves, and the more complex tow

arrangements found in integral structures.

4.3 The Effects of Tow Waviness

For the composites studied here, the main irregularity affecting in-plane elastic

constants is out-of-plane waviness of nominally straight in-plane tows. In the Binary

Model, reinforcement irregularity is introduced by offsetting nodes in the initial, stress-

free configuration.

Out-of-plane waviness was modeled by offsetting all stuffer and filler nodes in the

x3 direction only. The amplitude of the offset of the i th such node was

= I_iga a3 (36)

where _i iS a random variable; ga is a dimensionless amplitude parameter, with a = s or f

depending on whether the node lies on a stuffer or filler;, and a3 is def'med in Fig. 10. The

random variable _i is distributed according to a symmetric normal distribution with

second moment equal to unity. Thus the average magnitude of the nodal offset was

"gcx a3 (or = s or f). The influence of tow waviness was assessed by varying the

parameters gs or gf. The statistics of composite properties were computed by the Monte

Carlo method. For each pair (gs, gf), 20 simulations were executed. In each simulation,

values of _i were assigned by invoking a pseudo-random number generator and then

applying Eq. (36) to obtain {_i}.

No correlation was imposed between the offsets on neighboring nodes. However,

if two neighboring nodes had offsets so large that they exchanged places, the simulation

was not executed. This filtering sets the practical limit gQt---0.2 to the values of the

amplitude parameters.

Composite elastic constants were computed by averaging over the ensemble of all

simulations. The most significant impact of stuffer and f'dler waviness is on the in-plane

Young's moduli. Representative results are shown in Fig. 12, where the relative

magnitude of E1 is plotted against the stuffer offset amplitude parameter gs. In Fig. 12a,

the plot symbols show computed values found for one architecture for various values of

the filler offset parameter gf. As might be expected, filler offset has very little effect on
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El, since the fillers are transverse to the load. The continuous curve shows a fitted

Lorentzian function, which has the correct functional form at gs = 0 and a physically

reasonable form for high gs.
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Figure 12. Diminution of the composite Young's modulus E1 with increasing out-

of-plane tow waviness. (a) Binary Model results for composite l-L-1. (b)

Heavy curves: Binary Model results for composites/-L-l, h-L-l, and h-

O-1, with the abscissa normalized as in Eq. (37); fine curve: orientation

averaging estimate of Eqs. (38c) and (39).

It is useful in comparing the effects of waviness in composites with different

proportions al:a2.'a3 to relate the parameter gs to a distribution of misalignment angles.

Given offsets 15i and _i+l on successive nodes, the misalignment of the intervening tow

element with respect to the applied load axis may be trivially deduced (Fig. 13). If 5i

follows a symmetric normal distribution of second moment g = gs a3, then 8i+l-i_i follows

a symmetric normal distribution with second moment ¢2-gsa3; and the misalignment angle

{, if it is small, follows the same distribution with second moment

o_ = "/'2-gsa3/al (37)
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Softeningin the stufferdirectionisshown as a functionof 6_ forthreecomposites inFig.

12b (heavy curves).The curves shown are Lorentzian functionsfittedto Monte Carlo

resultsfor five values of at (or gO in each case. The curves show a high degree of

consistency,considcring the range of totalfiber volume fractionsand reinforcement

architectures represented.

SC.3431T.030494

tow elements with
offset nodes
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Figure 13. Schematic of misalignment angle implied by specified nodal offsets.

From Eq. (10), the axial modulus of a wavy tow with such normally distributed

misalignment angles falls by the factor

,t (38a)

using the notation of this section, where Ex-_)(_) is Young's modulus for a unidirectional

composite under a load oriented at angle _ to the fiber direction, x. Using Eq. (11), this

gives for small

1-Tit_-"{1+O_[_(UD)-_1Lc_' }_1 (+ Vxy(_) _, <- 10 ° ) ; (38b)
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Therestrictionson o_ shown in Eqs. (38b) and (38c) apply for the degree of anisotropy

typical of graphite/epoxy composites. The composite modulus E1 should fall

approximately by the factor

fsEx(_Xl-rlt)+ (1-fs) EytxJD)

fsEx_) + (1-fs) E_ )

(39)

The "orientation averaging" estimate of Eqs. (38b) and (39) has been added to Fig. 12b as

a free curve. The agreement with the results of the Binary Model is very good.

Measurements of typical 3D woven composites show misalignment parameters

for stuffers ranging up to o_ ~ 5 °. Figure 12b implies concomitant reductions of up to

- 15% in El. When the estimates of in-plane Young's moduli are reduced using values of

og measured for each composite, agreement with experiment becomes significantly

improved. Since estimates of waviness effects are the same in the Orientation Averaging

Model and the Binary Model (Section 3), further details are superfluous.

4.4 The Problem of a Single Wavy Tow

To explore distortions of local stresses due to tow waviness, some calculations

were performed for a simplified composite containing a single wavy tow. The composite

contained 25 stuffers in a 5 x 5 array with no filler or warp weaver tows. The nodes of the

central stuffer in the array were given offsets that followed a cosine curve of amplitude d

and wavelength _ (Fig. 14a). Each stuffer was 12 dements long. The spacing of the

stuffers and the length of each stuffer element were chosen to be the same as in

simulations of composite l-L-1. Because of symmetry, the entire body could be loaded

uniaxially in the direction Xl by specifying uniform displacement in that direction over

the end planes.

As expected, the stress computed in the elements of the wavy tow varied

sinusoidally, being maximum at the ends and center of the specimen, where the element

misalignment is least, and minimum in between, where the element misalignment is
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greatest.However, the amplitude, 6_., of the stress variation was remarkably small

compared to the average drop in stress along the tow, 56t. This is shown in Fig. 14b,

where oX/ot(0) and 8GI/Gt(0) are plotted against the amplitude d/a3 of the initial nodal

offset, with ot(0) the load in the tow when it is straight. Thus the load along the tow

remains very nearly uniform. Inequality in the effective stiffness of successive tow

segments because of their different misalignments is evidently accommodated by easy

shear of the effective medium elements. This reflects the high anisotropy of the tows.
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Figure 14. (a) Central section of a simulated composite containing a single wavy

tow. (b) Dependence of the average drop, _6t, of the stress in the wavy

tow and the amplitude, o_., of the variation in stress along the wavy tow

with the amplitude of the initial offset. Stresses normalized by the stress

in the tow when it is straight. All calculations at fixed applied strain.
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Analytical estimates of knockdown factors for the axial tow modulus due to

waviness should therefore be based on isostress rather than isostrain conditions in the

wavy tow. Isostress conditions were assumed in deriving Eq. (38). However, the

approximation of Eq. (38c) turns out also to be correct for isostrain conditions along the

wavy tow, and therefore whether isostrcss or isostrain conditions are assumed for the

purpose of estimating the effects of tow waviness is inconsequential unless o'_ is large.

4.5 Distribution of Loads in Tow Elements - Effect on Strength

4.5.1 Results from the Binary Model

Under in-plane loading along the stuffers, ultimate failure is the result of stuffer

failure either by kink band formation in compression or rupture in tension [12,37]. The

onset of such local failure events depends in part on the distribution of loads in short

segments of the stuffers - the stuffer elements in a Binary Model simulation. The effect of

tow waviness on the statistics of load distribution was assessed by analyzing the output of

Monte Carlo simulations similar to those described in Section 4.3.

Figure 15(a) shows cumulative probability distributions (cpd's), denoted FQ, for

the forces _ in stuffer elements for selected values of o'_, the width of the distribution of

stuffer misalignment angles (related to gs by (Eq. (37)), with the filler waviness

parameter gf = 0. The axial stress o'(si) in the ith stuffer element (in coordinates aligned

with the stuffer element) is related to Qi by the simple proportionality

a2t fs o(si) (40)Qi

following Eq. (16b). Each cpd contains 4800 data points (20 simulations; 240 stuffer

elements). Results for gf > 0 are very close to those shown for gf = 0: filler waviness has

little effect on stuffer loads. The forces are normalized against the average value in each

case; and simulations for different values of o'_ are further normalized so that the total

axial load in the composite was the same in all cases. When og = 0, there is a very slight

dispersion in the stuffer element forces, induced by the symmetry-breaking presence of

the warp weavers. As o_ increases, the distribution broadens, as expected, and becomes

increasingly skewed. Values of o_ between 1° and 5 ° are found for stuffers in current 3D

woven composites (Section 2).
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Figure 15. Results of the Monte Carlo simulations for composite h-L-1. (a)

Cumulative probability distributions of normalized tow element forces

for various values of sx, which is related to the stuffer waviness

parameter gs by Eq. (37). (b) Variation of the 90th percentile of tow

element forces with sx. The points show results of Monte Carlo

simulations for the filler waviness parameter gf = 0, 0.05, 0.1, 0.15, and

0.2. The smooth curve is a fitted parabola.

Analytical approximations to the distributions of Fig. 15(a) will be presented

elsewhere. They are based on shear lag analysis of stress redistribution around a

misaligned tow segment, and take advantage of the high degree of anisotropy present in

typical graphite/epoxy tows. The analytical models conftrm that the size of the slab used
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in the Monte Carlo simulationsreported here should be sufficient to make boundary

errors negligible.

The peak load bearing capacity of a typical 3D woven composite specimen is

reached when only a few localized tow failures have occurred, which would be

represented in Binary Model simulations by just a small fraction of all tow elements.

Thus the upper extremity of the epd of tow element forces is most relevant to strength.

The 90th percentile or 0.9 quantile, F_(0.9), will be taken here as representative of these

high values. It rises approximately as the square of o'_, as shown in Fig. 15(b).

Whether uneven load distribution is significant in determining strength depends

on how F_(0.9)/<Q> (Fig. 15b) compares with the width of the distribution of intrinsic

flaws. For failure in tension, statistics of intrinsic flaws in tows have not yet been

measured. Tow rupture strength in a 3D composite is probably influenced by waviness

and damage to fibers during weaving, among other things [12,37]. Since the strength of

3D woven composites is - 30% lower than values estimated from tape properties [12,37],

one might guess that intrinsic flaws for tensile failure are quite broadly distributed; and

therefore that the effects of uneven load distribution are relatively minor. Discussion of

the case of compressive failure follows.

4.5.2 The Distribution of Critical Loads for Kink Band Formation

Kink band formation under compressive loading occurs at the critical axial stress

Oc given by Argon's law [38]

_c = i_" (41)

where Xo is the shear flow stress for the matrix. Values of ~ 75 MPa are found for Xo in

the composites studied here [12,37]. The stress Gc can be regarded as a random variable

taking a specific value for each tow segment according to its misalignment angle _.1 If

1 In Section 2 and [9], which dealt with experimental measurements of waviness, the symbol _ was used to
represent a continuously varying misalignment angle along a smooth, wavy tow; while _ represented
extreme values of _ between successive locations of zeroes of _. The reduction in stiffness due to waviness
depended on the distribution of _. Strength depended on the distribution of _. In this section, _ and
become identical because of the piecewise linear representation of tows in the Binary Model
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isnormally distributedwith zeromean and second moment a t,then the densityfunction

fcforac must be

=% (42)

The corresponding cpd Fc is

fFc( c) = fc(u)du

= erfc [_1 (43)

[¥Z_{ ]I_c

where erfc is the complementary error function. Statistical aspects of kink band failure

will be governed by the lowest values of _c; or equivalently, low values of Fc. The 10th

percentile F_I(0.1) can be taken as representative of extreme flaws in _ecimens of the

size tested here. The density fc has an unbounded mean - the mean is dominated by the

very large values of Cc predicted by Fxl. (4I) when _ _ 0. 2 However, the dispersion of

flaw strengths can be gauged by comparing F_x (0.1) m the median flaw strength F_1(0.5):

FJ(0.1) = erfc-X[0.51= 0.41 (44)
Fal(0.5) erfc-l[0.1]

Thus, independently of cr_ and _o, flaws for compressive failure by kinking are always

broadly distributed in relative strength when misalignment angles are normally

distributed. The spread in flaw strength implied for normaUy distributed _ by the law Eq.

(41) is much greater than the spread in loads because of elastic inhomogeneity _ig. 15),

unless o_ is relatively large (>10°). Recall that o_ is less than ~ 5 ° for all the composites

studiedhere.

2 If t_ is regarded as the strength of a tow element then other failure modes such as fiber collapse would

intervene as _ rises;and <_> wouldbebounded.
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4.5.3 The Distribution of Shear Stresses

The tow elements in the Binary Model support no shear stresses - they are line

elements. However, the shear stress in any real tow segment can be estimated fi'om the

shear stresses in the effective medium elements sun'ounding the corresponding tow

clement in a simulation. For example, in this work each stuffer element is surrounded by

four eight-nodcd effective medium elements. The axial shear stresses 'c12 and x13 can be

evaluated by averaging the values of these stress components at the two integration points

in each of the effective medium elements that share nodes with the stuffer element in

question; i.e. an average over eight integration points in all.

Figure 16 shows cpd's F-c:2 and F_I_ for the two components of axial shear stress

x12 and x13 in stuffer segments for the architecture h-L-1 and five levels of the stuffer

misalignment distribution parameter o'_. The data of Fig. 16 are from the same 20

simulations used to generate Fig. 15. The shear stresses are normalized with respect to the

average axial stress in stuffer elements, <Qi>, for each value of og. Since the stuffers

have only out-of-plane misalignments, in keeping with experimental observations, x13 is

much greater than x12. Unlike Fig. 15, Fig. 16 shows significant dispersion in 'c12 and "c13

even when o_ = 0 (ideal geometry). This is the effect of the through-thickness

reinforcement (warp weavers).

Both x12 and 'C13 Can be decomposed into components _(w) and _(m)
"_'lj "t'lj (J = 2,3), the

former arising from the effects of warp weavers and the latter, a function of cry, from

stuffer misalignment. A simple estimate of x_j ) is the shear stress found when a_ = 0, i.e.,

for perfect stuffer alignment. The function x_j)(_) can be found from Monte Carlo

simulations in which warp weavers have been omitted (or their stiffness set to zero).

Numerical checks show that, to a good approximation,

x m)cn )'_lj((_) - 1,1j -lj -,,
(45)

for each stuffer element when identical sets of pseudo-random element misalignments are

used for the simulations with and without warp weavers. If F (w) and F (m) denote the

cumulative probability distributions of x_j ) and .(m) then from Eq. (45)tlj '

= -;% / - _" % ! (46)
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i.e., the distribution of the shear contributions _(m) for any _ > 0 call be obtained from
_lj

Fig. 16 by subtracting the inverse of the distribution for o t = 0 from that for o_. Thus

Figure 16 shows that for o1_ > 2 °, which is typical of current woven composites, the shear

stresses induced by the symmetry-breaking effects of warp weavers are much smaller

than those due to stuffer misalignment. This conclusion is reinforced by the observation

that the computed axial shear stress x13 is strongly correlated with the misalignment

angle, _, of any stuffer segment, with x13 = _ o{i); and therefore with the knockdown in

the axial stress Os due to waviness.

The criterion Eq. (41) for kink band formation is based on an estimate of the axial

shear stress caused by misalignment. For out-of-plane misalignments,

k(_ _. Os_ (47)

The criterion simply states that kink instability occurs when

_t_]= Xc , (48a)

the critical stress for shear flow. The additional axial shear stress due to warp weavers,

x_ ), lowers the threshold for kinking, which now occurs when

_) + '¢_1 = % (48b)

When 't_ ) and "c_ ) have the same sign, this and Eq. (47) give

instead of Eq. (41). The same knockdown is found with the simplest assumptions of kink

geometry when x_ ) is regarded as a remotely applied field [39].
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Figure 16. Cumulative probability distributions for shear stresses in stuffers

inferred from Monte Carlo simulations of composite h-L-l: (a) t13 and

(b) t12. Shear stresses normalized against average axial stress in stuffer

elements. The stuffer misalignment parameter sx is defined by Eq. (37).

In the presence of warp weavers, Eq. (49) could be substituted for F_,q. (41) in

estimating compressive strength. However, since x_ ) << x_ ) for realistic degrees of

misalignment, the stress effects of the warp weavers on the kink formation criterion are

probably beneath the resolution of experiments. (this is not to say warp weavers have no

effect on kinking. They have an essential role in determining _, played out mainly during

the weaving process - see Section 2.)
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5. Fatigue under Compressive Loading

This section pursues the description of the mechanisms of failure of 31) woven

interlock composites to compression - compression fatigue. As for monotonic

compression (refs. [12,37]; summary below), kink band formation is found to be the

principal mechanism. It is influenced by the same geometrical flaws that govern failure in

monotonic loading. A formula for the elapsed cycles to frrst kink band formation is

proposed based on the micromechanics of kink formation. Under load control, this leads

at once to a formula for fatigue life.

5.1. Summary of Prior Observations in Monotonic Compression

Monotonic failure mechanisms were studied and reported under a prior contract

[37]. This summary revises the essential points for understanding fatigue experiments.

Under monotonic compression aligned with the stuffers, several forms of

reversible nonlinearity and irreversible damage usually precede formation of the first kink

band [12,13]. Some degree of delamination between layers of stuffers and fillers nearly

always occurs. If the through-thickness reinforcement is insufficiently stiff (too heavily

deformed during consolidation), delamination cracks can grow unstably and premature

failure ensues by Euler buckling of delaminated layers. However, in the preferable case

of sufficiently stiff (undeformed) warp weavers, all delaminations remain relatively short,

and failure by Euler buckling is avoided [12,37].

As long as large scale delamination and Euler buckling are suppressed, as should

always be the case in a well manufactured 3D composite, the principal mechanism of

compressive failure is kink band formation. The kink bands form in individual stuffers.

They nearly always span the entire stuffer, but do not generally propagate into

neighboring stuffers. There is a strong correlation between sites of kink band formation

and the misalignment of the affected tow segment with the applied load. Thus local

misalignment acts as a geometrical flaw. According to mieromechanical models of kink

band formation, for the simplest assumptions of kink band geometry the critical axial

stress, Ok, in the affected tow follows Argon's Law [38,40]
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where Xc is the critical shear stress for shear flow in the matrix and _ is the local

misalignment angle.X Shear flow in these materials is mediated by myriad microcracks,

each < ll.tm long, arrayed between adjacent fibers (e.g. Fig. 17). The distribution of

strengths of geometrical flaws is related via Eq. (50) to the distribution F_ of 4-

Figure 17. A linear array of microcracks in the resin of a +45 ° AS4/1895 laminate,

the source of the "plasticity" in Fig. A-1. The array follows the local

fiber orientation.

The criterion Eq. (50) was derived for inf'mite, uniformly misaligned composites.

Significant errors could arise in applying it to irregular finite tows in a 3D composite. Yet

measured strengths correlate remarkably well with predictions based on Eq. (50), using

values for Zo and _ obtained from independent measurements [12,37]. Further details of

this agreement will be given below.

If finite tow size has no obvious effect on the kinking criterion, it should be

inferred that kink instability occurs more or less uniformly over the cross-section of the

1 Equation (51) inlroduces slightly different notation from Eq. (41). In fatigue, t_k and % will change with
elapsed cycles and are therefore distinguished from t_cand xo, which are their initial values; while _ refers,
as in Section 2, to an extremum of a continuously varying misalignment angle _.
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tow, rather than being triggered by some kind of flaw on the tow's surface. This view is

also implied by Eq. (50), which is based on the paradigm that compares most favorably

with data for laminates [38,40].

The critical stress crk can also be knocked down by shear loads induced, even in

perfectly aligned tows, by the symmetry breaking effects of warp weavers. However,

calculations of stress distributions in the elastic regime show that, in the subject materials,

such shear stresses are small compared to those due to misalignment, which are reflected

in Eq. (50) as it stands (Section 4). Delamination microcracks between layers of staffers

and fillers permit some degree of barreling in the through-thickness direction, depending

on the composite type and the loading configuration [12,37], which might exacerbate the

shear stress generated by warp weavers. However, the barreling occurs at strains above

that of peak load and therefore cannot influence strength, only strain to failure.

As well as delamination microcracks, shear microcracks are seen in angle

interlock composites prior to peak load along the inclined boundaries of warp weavers

where they are exposed to view on a machined specimen surface. These shear

microcracks also initiate delaminating microeracks along the boundaries of stuffers

(aligned tows). The latter are weakly correlated with microbuckling of short segments of

stuffers at loads near the proportional limit. The microcracking appears to free the stuffers

to buckle out of the surface, inducing kinking. However, this local failure sequence does

not occur away from cut surfaces. It involves buckling and kinking deflections in the

filler direction, which are evidently suppressed by the fillers' axial stiffness elsewhere.

All kink bands revealed in the body of composites by post-mortem sectioning have

deflections in the through-thickness direction, normal to the fillers. These are the kink

bands that cause failure.

These remarks and the empirical success of Eq. (50) support the simple idea that

kinking is essentially determined by a tow segment's misalignment, the axial load it

bears, and the material property xc.

The statistics of geometrical flaws are also a primary factor in determining

compressive strain to ultimate failure, el. Geometrical flaws that are broadly distributed in

both strength and space favor noneatastrophic, ductile failure. Thus, values of ef

measured for lightly compacted composites, which are relatively irregular, have exceeded

15%. In the heavily compacted composites, misalignment angles are much lower and
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failure is more brittle, with ef never exceeding a few percent. 4 Predicting this transition in

ductility requires detailed computational modeling, in which the distribution of

geometrical flaws in strength and space, the redistribution of load around a failed tow,

and the finite size of the specimen are all considered [23,37].

5.2 Fatigue Experiments and Observations

Dog-bone specimens of the dimensions shown in Fig. 18 were cut by water jet

from panels of the eleven materials of Table 1. With this specimen shape, most failure

events in both monotonic loading [12,37] and fatigue are confined to the gauge section.

Fully unloaded uniaxial compression-compression fatigue (load ratio R -- Omin/Omax = -

,o) was imposed at 1 Hz under load control using a 200 KIP test frame with self aligning

hydraulic grips. All experiments were conducted in laboratory air of relative humidity

50%. In all tests, the stuffers were nominally aligned with the load axis. Stress/strain data

were recorded continuously by a computer controlled acquisition system, reading strain

values from a single 1/2 in. (12.7 mm) clip gauge attached to the specimen.

Both the external surfaces and interiors of specimens revealed by sectioning

exhibit considerably less microcracking late in fatigue life than is observed under

monotonic loading by the attainment of peak load. Notably absent are the greater or lesser

delamination cracks found near peak monotonic load between layers of stuffers and

fillers. However, some small matrix cracks aligned normal to the load are observed on

specimen surfaces. These cracks are open at zero load and close under compression,

which suggests that they have relieved tensile residual stresses in the resin. However,

they do not appear to penetrate any deeper than the first layer of stuffers and have no

apparent role in failure. They should have only a slight effect on Young's modulus,

which is dominated by the stuffers.

Stuffers fail in fatigue as in monotonic compression by kink band formation.

Figure 19(a) shows a kink band revealed by sectioning an angle interlock specimen. This

particular fatigue test ended in run-out after 106 cycles, with little hysteresis broadening,

suggesting minimal global damage. The low level of global damage has left the kink band

in photogenic condition. Microscopy revealed almost no microeracking in its vicinity.

The only cracks seen ran along the failed stuffer from both ends of the kink band, but in

4 Without contradicting the brittle to ductile transition in going from heavily to lightly compacted materials,
strains to ultimate failure also depend on the specimen configuration. See [12].
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one direction only at each end. Thus the kink band probably caused the microcracking,

rather than vice versa.

SC._37T.0720_

stuffers-_ /-warp weaver

10 mm _ = [¢_;_d_
direction

/-, __ _! _ ,_. warp _j_fillers
f J'_---23 mm-_ _ stuffers

orientation of
angle interlock

weave

0.1 m

x2

X 1

Figure 18. Specimen dimensions, coordinates, and reinforcement orientation.

The kink band in Fig. 19(a) has occurred at a site of high stuffer misalignment.

The misalignment is associated with a common configuration of tows (Fig. 19(b)): a warp

weaver just beneath the surface in Fig. 19(a) wraps around a filler and presses it into the

stuffer, resulting in stuffer crimp. This distortion can arise during either the weaving of

the dry fiber preform or from compaction pressure used in consolidating it with resin

[12,37]. Figure 19 is one example of a common case. In both monotonic and cyclic

loading, the majority of all kink bands have been found at similar sites in all composite

types.

Figure 20 shows kink bands found on specimens sectioned just prior to failure.

(Failure was presumed to be imminent because of changes in specimen compliance - see

next paragraph.) These kink bands are much more complex than that of Fig. 19,

suggesting successive waves of kink instability under the high strains achieved at

ultimate failure. (See also [37], esp. Appendix D.)
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(a) A kink band in a stuffer of a specimen of type I-T-1. Co) Schematic

of the tow configuration associated with the stuffer misalignment around

the site of the kink band.

Stress-strain hysteresis records taken from the clip gauge show that the loading

and unloading elastic moduli remain nearly constant over 80-90% of the fatigue life.

Only over the last 10-20% of fatigue life do softening and pronounced hysteresis develop.

It is likely that the onset of softening and hysteresis is a manifestation of kink band

formation (see below).

Load-life data are shown in Fig. 21 in the form load amplitude A_ vs. cycles to

failure N. Data for monotonic loading (N=I) are reproduced from [37].
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5.3 Modeling Fatigue Life

5.3.1 Fatigue Damage Accumulation Leading to Kinking

Here a law is sought to predict the onset of kink band formation. While the data of

this program, which will be used to test the law, are for loading aligned with the stuffers,

the law should work equally well for kink band formation in fillers when they are the

aligned tows. It may also serve in composites with different reinforcement architectures,

such as 2D weaves, braids, or even laminates.

The absence of evidence that microcracking around tows precedes kinking in

fatigue suggests that Eq. (50) remains a valid criterion for kink band formation. In fatigue

the criterion becomes

_min_ = xe (51)

where o (rain) is the maximum local axial stress and _ is the misalignment angle for any
$

stuffer segment. Equation (51) describes an instability driven by axial shear stresses

within the tow, whose magnitude under nominally aligned loads is proportional to 4. The

value of _ does not change during fatigue, except perhaps when damage is very advanced.

Neither does o (min) change significantly, at least until some other kink band forms and
S

load redistribution affects the reference stuffer segment. Fatigue damage accumulation is

therefore conjectured to consist of continuous lowering of the value taken locally by %.

Physically, falling Xc is conjectured to correspond to microcracking of the resin

within the affected tow segment. The idea of accumulating resin damage as a fatigue

mechanism was first put forward by Piggott and Lain, who reported fatigue induced resin

damage in unidirectional tape laminates [41]. As yet, similar microcracldng has not been

observed prior to kink band formation in textile composites. It would presumably consist

of submicron cracks between pairs of neighboring fibers (diameter -7 I.tm; spacing - 1

_tm); or the debonding of fiber/resin interfaces. Direct confirmation of its existence will

require tedious sectioning and inspection of many specimens.

The rate of resin damage is assumed to increase with the axial shear stresses

induced by misalignment. By speculation, the law of degradation of Xc is written
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dN
(52)

where A and m are material constants; and Aos and Axs are the cyclic ranges of the local

axial stress and the local axial shear stress in the tow. 1 The applied load amplitude Ao

may be substituted for Aos via

E
-_ , (53)

Ao s = Ao E1

where Es and E1 are Young's moduli for a single stuffer and the whole composite. The

former is well approximated by Hashin's model [26]; the latter by isostrain volume

averaging models (Section 3). The values used here are taken from Section 3. They are

listed in Table 10. Variations from composite to composite are due to differences in fiber

volume fractions. The relation between Aos for any stuffer segment and Ao is also

influenced to some extent by random misalignment of neighboring stuffer segments,

which makes load distribution uneven. However, this effect is small compared to the

dependence of "ts on the value of _ for the subject segment (Section 4) and it is therefore

neglected.

Equations (51)-(53) imply a relation between the applied load Ao and the cycles,

Nk, to kink band failure, given _; i.e., the cycles required for % to be reduced sufficiently

for Eq. (51) to be satisfied on the next compressive loading:

Nk = ; ho/(1/R-1] E / EI+'r ° +1 (54)

A[_O] m

where x ° is the pristine value of xc and the load ratio R - Omin/Omax. For fully unloaded

compression-compression fatigue, R = **-- .

1 Whether it is appropriate to represent all stress effects by the stress range Ao, will be assessed in more

, detail in Section 6.
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Table 10. Young's Moduli for Composite, El, and Stuffers, Es

Composite E 1 Es Composite E l Es

Label (GPA) (GPA) Label (GPA) (GPA)

l-L-1 35.7 84.2 h-L-1 88.6 142.3

l-L-2 34.5 88.8 h-T-1 87.0 142.6

l-T-1 46.3 111.1 h-T-2 82.4 135.9

l-T-2 43.2 97.7 h-O-1 93.0 147.0

5.3.2 The Fatigue Life of a Composite

Equation (54) predicts that Nk falls with increasing misalignment angle, _, as

expected. The incidence of kink bands throughout any specimen will accordingly depend

on the statistical distribution of _. As each successive kink band forms during fatigue, the

axial stress in the affected stuffer segment will fall close to zero. The failed tow will then

debond from the surrounding composite (Fig. 19a and [12,37]) over some characteristic

slip length Is from the failure site. Along the slip zone, axial load is restored from the

surrounding composite to the failed tow by friction, until beyond the zone it regains its

far field value. Since Is is generally much larger than the.tow diameter, the frictional load

transfer is well described by the shear lag approximation. A complete description of

fatigue failure requires simulating the stochastic process of kink formation, while

computing redistributed loads in the entire composite sample (most simply by shear lag

modeling) following each kink band event. Eventually so many stuffers will be softened

by kink bands that complete failure will occur on a single cycle. A finite element

formulation of this problem, the Binary Model, was described in [37] and above.

While the Binary Model can reveal details of the effects of misalignment

distribution, load redistribution, stress concentrators, etc., rough estimates of fatigue life

under load control can be deduced from Eq. (54) much more simply. Hysteresis

observations indicate that fatigue life does not extend greatly beyond the first few kink

bands. Consistently, peak load in monotonic compression is associated with the formation

of two or three kink bands in specimens of the same size [12,37]. Therefore, fatigue life

can be estimated by interpreting _ in Eq. (54) as a value representative of the extremes of

the distribution F_. Equation. (54) becomes a law for constant load amplitude fatigue life:

for R = - ,o
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Nf = _A_ELE'+'C° + i- f(A_,_,A,m ).

Further remarks on the value of _ to be used in Eq. (55) appear below.

(55)

5.3.3 Fitting the Fatigue Law to Data

The fatigue life data of Fig. 21 were fh-st analyzed by treating the representative

misalignment angle _ for each composite as an unknown quantity to be determined by

..(i)
curve fitting. The fitted value for the ith composite will be denoted _fit" It takes a different

value for each material because the degree of irregularity varies from one composite to

another.

To fit load-life data, values are also needed for the initial shear flow stress "c and
o

the material constants A and m. For AS4/Shell 1895 composites (corresponding to the

heavily compacted composites), tests on + 45 ° laminates yield "Co = 75 MPa [12,37].

Following [12,37], the same value is assumed for AS4/Tactix 138 composites (the lightly

compacted composites), since Shell 1895 and Tactix 138 have similar properties in

tension and compression. Possible dependence of x ° on fiber volume fraction is assumed

weak and neglected. Since x° is the same for the two resins used, A and m are also

assumed to be the same for all composites.

Denote the load-life data for the i th composite { (Nij, At_ij), j=l ..... mi}, where Nij

is elapsed cycles to failure; Acrij is the corresponding value of Ao; and mi is the number

of data points. The load-life data were fitted by minimizing

S = _ f-1
1

(56)

where fl'[Nf-' ,;,A,m) ' is the inverse of the function f defined in Eq. (55). Numerical

methods for the fitting problem are outlined in the Appendix C.

The fitted load-life relations are shown in Fig. 21. The fit is satisfactory, although,

of course, this does not of itself prove the correctness of Eq. (55) or the mechanics
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underlyingit. For large N, the load-life curveis nearly linearon the log-log plot shown,

with slope= -l/re. This limit is evident from Eq. (55). The fatigue exponent m is an
. (i)

indicator of fatigue sensitivity. It has the value m = 30 + 4. Values and error bars for _fit

are shown in Fig. 22, which is described more fully in the next Section. The procedure for
{.'l

estimating the uncertainty in m or _1: is given in Appendix C.
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Figure 20. Kink bands found in heavily compacted composites after failure.

5.3.4 Measured Distributions of Misalignment Angles

Misalignment angles were measured for all the subject composites by methods

described in Section 2. The largest misalignments are those in the out-of-plane direction.

In-plane misalignments are small enough to be ignored.

Distributions of out-of-plane misalignment extrema were shown in Fig. 7. Fatigue

life under load control in the test specimens is observed to be nearly exhausted when

two or three kink bands have formed. The values of _ for the corresponding tow segments

ought to fall in the last 10% or so of the measured cpd. Thus the 0.9 quantile of the cpd,

;0.9-F_1(0.9), where F_ 1 is the inverse of F;, should be a representative measure for

substitution into the fatigue law Eq. (55) for specimens tested.
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..(i)
Values of 40.9are compared inFig.22 with the misalignment angles,_fit'found

forseveralcomposites by minimizing E_I.(56).The errorbars shown for _).9arisefrom

noise in the tow locideduced from photographs and partlyfrom sampling errors.Their

computation has been described in [12,37].5 Figure 22 broadly confirms the expected
_(i) ._(i)

equalityof _0.9and _fit"The most significantvariationsin _0.9and _fitare between the

groups of lightlyand heavilycompacted composites. The values inferredfrom fatigue

data and the measured misalignmcnts vary proportionatelyfrom one group to the other.

assumptions underlying Eq. (55) obscure any trends.

5.4 Discussion

5.4.1 Fitting Load Life Data

There is insufficient information in the data of Fig. 21 to test the validity of the

model for fatigue life. Nevertheless, some characteristics of the predictions appear to be

confirmed.

The experimental data are consistent with the prediction that the different load life

curves should be parallel to one another. (i) This confirms that all fitted material

properties, Xo, A, and m are the same for all composites. Only the misalignment angle

statistic, 4, varies from curve to curve. Since _ appears in Eq. (55) only in the product

_Acr, changing _ simply shifts the predicted curve along the stress axis. (ii) The product

_Ao is proportional to the axial shear stress in the tow segment whose misalignment is 4.

Thus the data falling on parallel curves also confirms that dxcJdN is a function of the axial

shear stress only.

Equation (55) predicts load-life curves that are not quite straight on log-log plots,

as close inspection of Fig. 21 bears out. However, the departure from linearity is less than

the noise in the life data. The data would be fitted equally well by a Basquin law,

log Nf = -m log Ac + constant (57)

5 For reasons detailed in [12,37], the error in _0.9 that arises from noise in images is systematic; i.e., it

amounts to an uncertainty factor in the scale of the abscissa of Fig. 22.
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Figure 21. Load-life data and fitted curves based on estimates of the cycles to the

formation of the In'st few kink bands.

Only the modeling steps leading to Eq. (55) argue for a nonlinear curve. Nevertheless, the

near uniform slopes of the fitted curves and the data conf'u'ms the feature of the

conjecture in Eq. (52) that dxe/dN varies as a fixed power of the axial shear stress, AG_.

Given _, Eqs. (54) and (55) yield

(where the lefthand sideisjustIOm_) forfailureon the firstcycle.This predictionwas

compared with measurements of monotonic strength in [12,37], with a degree of
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agreement similar to that of Fig. 22. In both cases, values of _ implied by test data

(strength or fatigue life) were slightly higher than those measured on specimen cross

sections. However, the discrepancy is not significant given measurement errors and

modeling uncertainties.
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Figure 22. Measures of misalignment extrema: _fit deduced from fitting Eq. (55) to

load-life data; and _0.9, the 0.9 quantile of the measured distribution of

maximum out-of-plane misalignment angles in tow segments.

5.4.2 Variations in Modulus

Young's modulus in the stuffer direction is dominated by the stuffers. Young's

modulus of a single stuffer is reduced by tow waviness by a factor that depends on the

continuously varying misaligned angle _ (of which _ measures extrema), which is
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approximately normally distributed (Section 2). The reduction factor TI (11 < 1) is given

approximately by (from Eq. (10))

-1

o o lf:[ ._Gxy 2(l+Vxy ) d_,
(59)

where o'_ is the width of the distribution of _; while Ex, Gxy and Vxy are the axial

modulus, axial shear modulus, and axial Poisson's ratio of the stuffers in a local

coordinate system in which the x-axis is aligned with the fibers. Equation (59) is

essentially an average of axial stiffness along a wavy tow under conditions of uniform

axial stress. The term Es/Gxy - 2(1+ Vxy) in Eq. (59) is a measure of the anisotropy of a

single tow. For graphite fibers and pristine resin, it is typically = 40.

Equation (59) suggests two mechanisms for softening: an increase in

misalignment (i.e., in t_); or an increase in the anisotropy factor. Misalignment appeared

not to change during fatigue, leaving only changes in anisotropy to consider.

Since Ex for a stuffer is dominated by the graphite fibers, any significant change

in anisotropy must come from a decline in the axial shear modulus Gxy, which is resin

dominated. This would be interpreted as another consequence of the resin damage that

causes the decline in the shear flow stress, xc. To make some crude estimates, assume that

Gxy declines according to a law similar to Eq. (52):

dGxy = .A (AC_s_)m
dN

(60)

with the same coefficients A and m that were determined for the shear flow stress, Xc, but

with _ replaced by the continuously varying misalignment angle _. (Reductions in Gxy

and Xc do not necessarily go hand in hand. The former, as inferred from the loading

modulus in hysteresis data, refers to strains _¢0.5%. The shear flow stress relevant to kink

band formation, xc, refers to strains >1%.) Substitution of Eq. (60) into Eq. (59) implies a

reduction in composite modulus that might accompany softening of the resin prior to kink

band formation. The computed reductions turn out to be very small (< 10"4). The integral

in Eq. (59) is dominated by values of _ that are much less than _, which measures

extrema of _; but, because of the high values of the exponent m found empirically in
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Section 5.3, dGxy/dN is negligible unless _ = _. Thus, even at the end of life, when xc at a

location of extrema misaligument has fallen substantially, the spatially averaged stiffness

of a tow is essentially unchanged.

Only two credible sources of reduced stiffness remain: microeracking and the

onset of kink band formation. From the observations reported above, kind bands cause

most microcracldng; and therefore kink bands are inferred to be the source of softening

late in life.

5.5 Load Control and Strain Control

The simple relation between the result in Eq. (54) for kink formation at a single

site and the fatigue life law in Eq. (55) is suggested for fatigue under load control. It is

based on the prior observation that, under load controlled monotonic loading, the

specimen cannot survive the formation of the first few kink bands [12,13,37]. However,

the equivalence of a few kink bands and ultimate failure does not necessarily follow for

fatigue. In fatigue, the distribution of the strengths of flaws evolves with cycles (Eq.

[52]). Especially for high cycle fatigue, it may in principle become quite dissimilar to the

pristine distribution, and several kink failures may no longer necessarily cause

catastrophic failure. Yet the experimental evidence presented here is that they do; or at

least that their occurrence accounts for 80-90% of fatigue life under load control, even for

high cycle fatigue.

Under strain control, life prediction may be more difficult. The subject composites

can exhibit remarkably high strain to failure for monotonic compression under

displacement control, surviving high densities of kink bands in individual stuffers before

ultimate failure [ 12,13,37]. One might consistently expect considerable life following the

formation of the first kink bands under cyclic loading at constant strain amplitude.

Ultimate failure will depend on the details of the redistribution of load around individual

kink bands. A computational model of this process has been formulated, the Binary

Model of [23,37]. The law Eq. (52) will serve as a local constitutive law within the

Binary Model, with AGs the computed local axial stress, updated following each kink

band event.
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6. Tension-Compression Fatigue

Further load-controlled fatigue tests were conducted under fully reversed loading

(R=-I), using the same specimen configuration used for compression-compression

fatigue. Tests were limited to one weave architecture, viz. h-T-2.

Load-life data for the fully-reversed fatigue tests are compared in Fig. 23 with

data from Fig. 21 for compression-compression fatigue. The ordinate in Fig. 23 is the

magnitude of the maximum compressive stress on any cycle, ]Omin 1. If fatigue life were

governed by the cyclic load amplitude, then the data for fully-reversed fatigue

(A_=2 [_min ] ) should be a factor of two lower on the stress axis than the compression-

compression data (Ac= [Cmin [). However, they are in fact lower by only approximately

20% at the lives for which fully reversed data are available. The tensile half cycle is

apparently far less injurious than the compressive half-cycle.

Because of limited resources, destructive examination of test specimens was not

performed to probe fatigue mechanisms for fully-reversed loading. However, since

fatigue life is correlated most strongly with the magnitude of the compressive cycle, the

fatigue mechanism is very likely to be kink bands similar to those presented in Section 5.

Following the conjecture of Section 5, fatigue life should be proportional to the cyclic

range of the local shear stress in misaligned tow segments. Now the shearing

of a misaligned tow is a nonlinear phenomenon: compressive loading exacerbates

misalignment, allowing greater shear strain; while tensile loading straightens fibers,

which minimizes shear strains. TI__s nonlinearity was not incorporated in Eq: (52), which

includes the linear approximation A_ for the cyclic range of the local shear stresses. If

Eq. (52) was corrected to account for nonlinearity, the relative weight of tensile loads as a

cause of fatigue damage accumulation would be reduced. A physically consistent model

of fatigue for both compression-compression and tension-compression loading might

result. Much more data is required to conclude this question.

The evolution of stress-strain hysteresis during one of the fully-reversed tests is

shown in Fig. 24. Late in life, softening is evident in both the compressive and tensile

load cycles. As for compression-compression tests (Section 5), the softening is most

likely a manifestation of kink band events. Kink bands cause local softening in both

tension and compression. No other damage observed on the specimens seems capable of

causing such large changes in tangent stiffness.
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7. Work of Fracture and Notch Sensitivity

Tensile tests of most 3D woven composites in our material matrix were reported

in a prior contract [12,37]. Those tests showed exceptional strains to peak load and high

implied work of fracture. However, quantitative analysis was restricted by unexpected

inadequacy in the method of strain measurement. Damage was so broadly distributed

along the gauge section (= 25 ram) that, in many cases, it fell outside the 10 mm clip

gauge used to measure axial strains. Some test data for cases where considerable damage

happened to fall within the gauge are shown in Fig. 25(a)-(c). However, even in these

tests it was unclear whether all nonlinearity had been measured; and important details of

the mechanisms of failure and damage distribution remained undetermined. Additional

studies were therefore undertaken.

7.1 Tensile Tests - Preliminary Observations

The additional tensile tests were performed for several heavily compacted

composites, again with the dog-bone specimens of Fig. 18 loaded along the stuffer

direction. The grips were placed a few millimeters away from the gauge section, allowing

room to attach extensometer rods that measured the displacement, d, over the entire

gauge section plus a millimeter or so at either end. This displacement was used as the

control variable for loading. The relative displacement of the grip mountings was also

recorded for qualitative conf'mnation of the extensometer data.

The extensometer displacement also yields an estimate, eo --- d/l, of the

engineering strain in the gauge section, with I the initial separation of the extensometer

rods. The estimate is a lower bound to the actual strain because the shoulders of the

specimen are included in the gauge length, l; but analysis shows that the difference is

inconsequential in what follows.

Fig. 25(d)-(f) presents stress-strain histories for the new, long gauge length tests.

With some variation from material to material, key characteristics are consistent.

Substantial nonlinearity sets in at strains between 0.5% and 1%, usually in the form of

continuous softening. At high loads, the smooth curve gives way to a series of jagged

peaks and sharp, small load drops. The global peak load is 0.7-1 GPa. This is

approximately 70% of the value that would be expected from the strengths of pristine
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AS4 graphitefibers and the volume fraction of aligned fibers [12,37]. At a critical strain

that varies from 2.3% to nearly 4%, an unstable, large load drop occurs, which will be

called the primary load drop. Smaller but significant loads then persist to very large

displacements, often similar to the initial gauge length. Similar long tails to the stress-

swain histories would presumably have been recorded in Figs. 25(a)-(c) had the tests not

been terminated at the primary load drop by operator decision.

The primary load drop common to all tests conveniently divides the material's

response into two phases. The phase prior to the primary load drop will be called the

"hardening phase," since the stress is generally increasing - the small load drops often

seen near peak load will also be termed part of the hardening phase. The phase after the

primary load drop will be called the "pullout phase."

As previously reported, stuffers generally rupture as discrete entities. The rupture

of one stuffer does not generally cause failure of its neighbors at the same location.

Instead, matrix cracking around the circumference of the failed tow debonds it from the

surrounding composite, so that any stress concentration is minimized and neighboring

aligned tows commonly remain intact. Sliding along circumferential debond cracks

typically extends several mm from the location of the rupture. By this mechanism, stuffer

failures develop over a broad damage band, often spanning the entire gauge section. The

long tail in the load displacement curve corresponds to pullout of failed stuffers. The

appearance of the pullout is typified by Fig. 26.

At strains of approximately 1% and generally well before stuffer failures, matrix

cracks begin to appear between f'dlers, which were the orthogonally disposed tows in the

tensile tests. These cracks become widespread after loading to high strains in all the

heavily compacted composites studied. The layers of resin between fillers are clearly

much weaker than the f'fllers themselves, since the fillers are rarely seen to fail internally.

The interfiller cracks are analogous to the multiple cracks found in the 90 ° plies of 0/90 °

laminates, except that their spacing is dictated by the filler size rather than the mechanics

of stress relief. Since graphite/epoxy tows are highly anisotropic and the fillers are loaded

transversely in the tensile tests, the concomitant fractional change in the composite

modulus is rather slight: < 5% (Section 3). Interfiller cracking does not contribute

significantly to the substantial nonlinearity visible in Fig. 25 prior to peak load.
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As the number of ruptured stuffers increases, interf'fllcr cracks on one or more

planes develop large openings, until, beyond the primary load drop, a macroscopic

"tension crack" is evident. Such tension cracks may traverse the whole specimen, but

since stuffer failures are not generally coplanar, they remain bridged by intact stuffers.

Ultimate failure eventuates when the bridging stuffers are pulled out of the fracture

surfaces.

Tension cracks do not always cross the whole specimen. When viewed on a cut

side of the specimen, they are occasionally seen to terminate at a delamination crack

running parallel to the load axis between a layer of stuffers and a layer of fillers. Ultimate

failure may then consist of separation of the specimen along a path comprising the fast

tension crack, the delaminafion crack, and a second tension crack traversing the rest of

the specimen. The two tension cracks may be offset from one another by as much as

lOmm.
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Stress-strain curves for tension tests of heavily compacted composites.

The gauge length over which the displacement was monitored is as

marked.
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7.2 The Maximum Strain in the Hardening Phase

Fig. 27 is a summary of the range of strains to failure measured for AS4 fibers

formed into unidirectional composites with different thermoset and thermoplastic

matrices. 1 The failure strains are distributed around a median of approximately 1.5%.

Nearly all values fall below the strain to failure of bare fibers, 1.65%, quoted by the fiber

manufacturer. 2 The composite failure strains are slightly lower because the matrix

concentrates stress around the f'n'st fibers to fail, leading more readily to failure of their

neighbors.

The volume fractions of the composites represented in Fig. 27 are similar in many

cases to those found in the interior of stuffers in the heavily compacted 3D weaves. One

might therefore infer that the strains to failure of the stuffers, and therefore of the 3D

woven composites themselves, ought to be similar. In fact, the hardening phase in the

composite, over which loads are typically -- 1 GPa, survives to considerably greater

strains than this: in the range 2.5-4%.

The extent of nonlinearity prior to peak load can be highlighted by comparing the

measured stress-strain data curves with the linear projection of the initial elastic response

(e.g. Fig. 25d). Stress-strain data for unidirectional materials follow linearity to peak load

quite closely. Data for 0/90 ° laminates show some softening due to 90 ° ply cracking, but

only of the order of a few percent, since the 0 ° plies dominate stiffness. Distinct

mechanisms clearly operate in the 3D woven composites.

7.3 Damage Mechanisms in the Hardening Phase

Considerable energy was applied to explaining how the strain at peak load in the

woven composites can be so much greater than in unidirectional composites. The answer

lies partly in the effects of geometrical irregularity, especially stuffer waviness, crimp,

and twist; and partly in the mechanics of load redistribution around sites of stuffer failure.

For loading along the stuffer direction, Xl, the response of the composite is

dominated by the stuffers themselves. The fillers, which are orthogonal to the load, and

the warp weavers, which follow oscillating paths mostly at large angles to xl, are

1 From data compiled by Dr. Norm Johnston and Mr. C.C. Poe, NASA Langley Research Center
2 Data sheets, Hercules, Inc., Salt Lake City, Utah.
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relatively compliant for loadsalong this axis. In the elasticregime,Young'smodulusin

thestufferdirection,El, is fairly well approximatedby

E, --fsEx(Up)+ (l-fs)_JI)) (61)

where fs is the fraction of all fibers that lie in stuffers; and Ex(Up) and Eyg'_) are the axial

and transverse Young's moduli for an individual tow considered as a unidirectional

composite. For the heavily compacted composites, fs = 0.58 (Table 2), Exgin) --- 140 GPa,

and Eyf°D) _- 8 GPa (Table B.2). The fraction of the total external load borne by the

stuffers is fs E(xtr°)/Ex -- 0.96.

Plastic Tow Straightening

All of the stress-strain curves show significant nonlinearity setting in when the

applied load (ra -_ 500 MPa, corresponding to strain eo = 0.6%. It is very unlikely that any

stuffers have ruptured at so low a strain. Interfiller cracks begin at this strain level, but

they can lower Young's modulus only by about 4%, since they do not affect the modulus

of stuffers. Between strains of 0.6% and 1% (at which strain stuffers have not yet begun

to fail), the data of Fig. 25 show much larger declines in the tangent modulus.

This softening is believed to arise from plastic straightening of the stuffers, i.e.,

the reduction under load of the degree of their random waviness. If'the straightening were

an elastic process, Young's modulus should rise with strain, since a one-dimensional

composite is stiffer when it is better aligned. However, if the straightening is plastic, then

initially misaligned tow segments can elongate at approximately constant local axial

loads; and the composite will appear macroscopically to soften.

The critical applied load for the onset of plastic straightening can be estimated

from other data. The initial misalignment angle, _, of stuffer segments is approximately

normally distributed (Section 2), with expectation value <1 1>= 2 ° (Table 3) and the

90th percentile of [_ [ lying near 5 ° (Fig. 22). The shear stress in any stuffer segment is

given approximately by*

_:131_. (r_s)[_ _- c_.J/fs (62)

i- Since stuffer waviness is primarily out-of-plane, the axial shear stress component x_s has the largest

magnitude. .......
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wherex3 is the through-thickness direction, a= is the applied stress, and o_ s) is the axial

stress in any stuffer. The critical shear stress, _¢, for shear "flow ''2 inside a tow was

independently measured in studies of kink band formation during compression (Section

5; [12]). Its value is approximately 75 MPa. Thus from Eq. (62), tow segments whose

misalignment ranges from 2 ° to 5 ° should straighten plastically for applied stresses

ranging from 500 to 1250 MPa. This is indeed the range over which softening is seen.

The lower end of this range is also equal in magnitude to the compressive strength [12],

which is determined by the occurrence of the first few kink bands. Kink bands are

mediated by the same shear flow within tows.

Transition to Stuffer Rupture

The axial strain required to eliminate waviness from a tow is just Cw-1, where ew

is the crimp factor, defined as the total initial arc length per unit length along the tow's

nominal axis. For a tow whose continuously varying misalignment angle _ is normally

distributed with second moment o_ (F-Xl.(5)),

f-
_....1.__ | dE (63a)

e. = j_ cos 

_- 1 + ½ o_ (small t_) (63b)

Measured values of o_ were listed in Table 3. The corresponding values of ew lie

in the range 1.00003-1.0012. Thus the maximum contribution to composite strain from

plastic straightening of out-of-plane waviness is ~ 0.1%, which is a small part of the

difference between the failure strain of the carbon fibers (1.5%) and the end of the

hardening phase (2.5-4%).

However, both measurements of Young's modulus for the composite and more

detailed examination of tow irregularity suggest that other significant distortions in

stuffers need to be accounted for in estimates of tow straightening. Unfortunately, the

additional distortions are not easy to describe, let alone to quantify - their magnitudes

2 See [12] and [37] for a description of the microscopicnature of shearflow in these composites.
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were left undetermined in Section 3. However, they can be inferred indirectly from

measurements of Young's modulus. Assume that unmeasured distortions may continue to

be described by a normal distribution of misalignmcnt angles _, but now with an

enhanced value of the variance o_. According to the Orientation Averaging Model of

Section 3 (which concurs with the Binary Model of Section 4; see Fig. 12b), Young's

modulus should be reduced by waviness by the factor

'rl = {1 +o_r} -1 (64)

factor of value = 40 for graphite/epoxy. The value of _ can thuswhere F is orthotropyan

be deducedfrom the ratio of the measured ¥oung's modulus to that predicted by the
OrientationAveraging Modelfor a geometrica_yideal composite.Thence ensuesa new
estimate of the crimp factorCwvia Eq.63(b).The resultsof thisprocedureare shownin
Table 11. The inferred values of og are generallysomewhat larger than those attributed to

out-of-plane stuffer waviness alone (cp. og of Table 3 with og of Table 11). Since Cw*-

_, the increase in is and the strains implied from tow straighteningimplied Cw greater,

might be as high as 0.25%.

Table 11. Estimating the Crimp Factor for Stuffers from

Measured and Predicted Young's Moduli

E1 (GPa) 11 og c Cwd

expt a OA b (expt/OA) (radians/degrees)

h-L-1 85 91.5 0.929 0.044/2.5 1.0010

h-L-2 80 81_2- 0.985 ...... 0.019/iA J.0002

h-T- 1 79 88.6 0.892 0.055/3.2 1.0015

h-T-2 72 85.1 0.846 0.067/3.9 1.0023

h-O-1 88 93.1 0.945 0.038/2.2 1.0007

h-O-2 69 83.8 0.823 0.073/4.2 1.0027

a measured in the stuffer direction

b predicted by the Orientation Averaging Model for ideal geometry (straight stuffers)

c deduced from T1via Eq. (64)

d from O_ via Eq. (63b)
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When this strainis added to the strain to failure for an initially straight tow, an

estimate of the composite strain at which stuffers should fail results. Using the

unidirectional composite data of Fig. 26 as a guide to the failure strain of a straight tow,

say 1.65%, stuffers should fail at composite strains just short of 2%. Of course, the

estimates of strains arising from tow straightening were based on the assumption that all

tows are wavy to the same degree. In fact, there is considerable variance in the degree of

waviness from composite to composite, from specimen to specimen, and from tow to tow

within the same specimen. Furthermore, 1.65% is an upper bound to the failure strain of

an initially straight tow. Damage during weaving is likely to reduce the strength and

therefore the failure strain of at least some tows in a typical specimen gauge section. The

knockdown in strength might be as much as 30% for some tows (see further remarks

below). Overall it is realistic to expect that stuffers might fail at applied strains ranging

from as little as 1% to perhaps 2.25%.

The stress-strain data of Fig. 25 indeed exhibit small, sharp load drops in the

hardening phase once the swain exceeds a threshold that varies from 1% to 2%. These are

believed to correspond to tow rupture events. Their commencement signals the

attainment or near attainment of peak load.

(b)

pulled out
stuffers

Figure 26. One half of a specimen after failure, showing evidence of extensive tow

pullout.
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In most cases, the load remains very near its peak value until the primary load

drop occurs at strains of 2.5-4%, well above the highest estimates for tow rupture strains.

Thus some mechanism exists for transferring loads around sites of stuffer failure that are

approximately equal to the load in the tow at the time it failed. This is a remarkable

conclusion. It indicates an efficiency of load transfer quite beyond the realm of

unidirectional composites of cross-plied laminates of any fibers in any kind of matrix.

The load transfer mechanism is believed to achieve its efficacy via a lock-up

mechanism involving tow waviness. Crimp features are found damaged but not entirely

straightened on pulled-out tows following tensile failure, implying that they have been

dragged through the composite during pullout in their crimped condition. Lockup occurs

during the pullout process when crimp asperities on adjacent tows come into contact. The

contact forces in 3D woven composites can be especially high because the warp weavers

prevent contacting stuffers from separating to facilitate sliding.

Further remarks comparing lockup with frictional

reinforcement appear below.

1.0
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/
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Strain to Failure(%)

effects on smoother

fibers

Figure 27. The distribution of strains to failure of unidirectional composites of AS4

carbon fibers in various thermoset and thermoplastic matrices. The

failure of unidirectional composites is generally catastrophic: there is

negligible load bearing capacity following attainment of peak load.
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7.4 Flaws and Strength

The greatest unnotched strength that could ever be achieved in the composite

would be that for ideally straight, undamaged stuffers. Ignoring the contributions of

fillers and warp weavers (see below), one has by the rule of mixtures

_u = fsVe_¢)Ee (65)

where fsV is the volume fraction of the composite constituted by the fibers in stuffers

alone; _c) is the fiber failure strain; and Ef is the fiber modulus. For a failure strain of

1.5% for AS4 fibers in stuffers (the median of the data of Fig. 26), fsV = 0.35 (an average

for all the heavily compacted composites in Table 2), and Ef = 235 GPa (Table 5), Eq.

(64) gives au = 1.2 GPa. The measured peak loads (Fig. 25) are lower than this by 20-

40%.

As previously conjectured [12], factors contributing to strength loss include

damage to fibers during the weaving process; reduction of strength where stuffers are

severely distorted in the composite; and the uneven distribution of loads due to random

stuffer waviness. The In'st two of these are difficult to estimate a priori. The third,

however, is amenable to modeling: this was one subject of the Binary Model calculations

of Section 4. Intuitively, one sees that ff one tow segment is relatively straight compared

to its neighbors, then it is also relatively stiff and bears a disproportionate share of the

external load. Thus the critical external load for tow failure falls as the degree of tow

waviness increases. Figure 15b showed how the loads in the most highly stressed stuffer

segments rise as the square of the deviance c_ of the misalignment angles _, which

tow waviness. Strength falls inversely with _, following the reciprocal of therepresents

ordinate in Fig. 15b.

For the largest values of a_ inferred by comparing measured and predicted

Young's moduli (Table 1 I), the strength reduction due to unequal load distributions is -_

10%. This is about a quarter to a half of the reduction in measured peak stress from the

value implied by fiber volume fractions and the strength of pristine AS4 fibers [12,37].

Thus it appears that uneven load distribution can be a significant determinant of strength,

with effect in some of the tested composites comparable to the distribution of intrinsic

flaws in stuffers. This conclusion gains further support from the observation that broken,
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relatively straightsegmentsof stuffers and unbroken, relatively wavy segments are often

found side by side, the more wavy stuffer having ruptured elsewhere.

7.5 The Pullout Phase

Beyond the primary load drop, the stress fails monotonically and approximately

linearly with displacement (Figs. 25(d)-25(f)). This is consistent with load transfer by

uniform friction among stuffers whose contact length is decreasing in proportion to the

separation of the two halves of a ruptured specimen. The friction stress, x, which acts

along the debonded length, Is, of a broken stuffer (Fig. 28), can be related to the applied

load, oa, by the shear lag approximation:

aa = as= sxI_._xs
A

(66)

where s and A are the circumference and cross-sectional area of a stuffer. With s = 5.4

ram, A = 1.5 mm 2 (Table 8), fs = 0.58 (Table 2), an average pullout length ls = 5 ram, and

aa = 50-100 MPa (Figs. 25(d)-25(f)), Eq. (65) yields x = 5-10 MPa.

L

remote I
stuffer O-(xS)_] I
stress I

I

I

siteof
tow rupture

SC.38STT.020795

x

Figure 28. Cell model of frictional load transfer in the shear lag approximation.

7.6 Friction Stresses During Lockup

Stuffer rupture is always accompanied by debonding of the ruptured tow from the

surrounding composite at the moment of rupture. Therefore, load transfer around failed
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stuffersin the hardeningphasemightalsobedescribedasafrictional process.However,

the frictional stresses must be very large. The macroscopic stress remains quite near peak

load throughout the hardening phase, typically 700 MPa - 1 GPa. Taking Is = 1-5 mm as

representative slip lengths, Eq. (66) yields x -- 100-500 MPa. This range is one to two

orders of magnitude greater than during the pullout phase. The friction process is clearly

controlled by different mechanisms.

The critical mechanism is conjectured to be lockup: the arrest of sliding by the

contact of asperities. Fig. 25 implies that the asperity contact persists from applied strains

near 2% until the primary load drop (strain 2.5-4%). The primary load drop apparently

corresponds to failed stuffers breaking through the restraints of asperity contact.

7.7 The Role of Warp Weavers

Warp weavers, which follow approximately sawtooth paths, fail at significantly

higher applied strains than the stuffers, which are nominally straight. However, since the

warp weavers contain 5-10 times fewer fibers than the stuffers (Table 2), they contribute

only a few percent to Young's modulus and ultimate strength in the stuffer direction

(Section 3). They are therefore unlikely to contribute significantly in a direct way to the

nonlinearity prior to peak load. During the hardening phase, the load is borne

predominantly by the stuffers.

The indirect effects of warp weavers, on the other hand, are profound. Their

presence is the primary reason stuffers are disturbed during weaving (section 2); resulting

in stuffer crimp or waviness. Without the geometrical distortion of stuffers, neither plastic

tow straightening nor lockup would exist.

Equally importantly, warp weavers play a primary role in the mechanics of

lockup. Under axial tension in the stuffer direction, warp weavers develop through-

thickness compression. This aids lockup by increasing the contact forces between

asperities. Indeed, the rupture of warp weavers has not been observed in any specimen

prior to the primary load drop; while none or very few survive across the tension crack

observed in the pullout phase. Therefore, we conjecture that the primary load drop

occurs exactly when warp weavers fail and permit already ruptured stuffers to spring

apart and move relatively freely pass another.
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7.8 Bridging Tractions and the Work of Fracture

In a large specimen containing a stress concentrator such as a hole, tow rupture

would be expected to develop as a band of damage that could be described

macroscopically as a crack (Fig. 29). The nonlinear process of tow straightening, rupture,

lockup, and pullout would form a cohesive zone behind the crack tip, defined here as the

point of furthest advance of damage. At sufficiently large crack lengths, traction free

fracture surfaces will develop in the far crack wake (Fig. 29).

The fracture mechanics of such a crack are determined by the relation between the

tractions, p, across the cohesive zone and the displacement discontinuity or crack

displacement, 2u, that it introduces into the body. It will be seen below that the cohesive

zone in 3D woven composites is very long; at least an order of magnitude greater than the

specimen width in the tensile tests. Consistently, damage is essentially uniform in the

tensile tests, apart from statistical fluctuations deriving from random tow waviness.

Therefore the tensile test yields a direct measurement of the relation p(u). The bridging

tractions, p, can be identified with the applied load, ga. The displacement discontinuity,

2u, is related to the displacement, d, measured over the gauge length, I, by

_8

2u=d-_-I (67)

where Ee is the composite modulus and the second term represents the displacement that

would have been measured in the absence of any nonlinearity.

Briaging traction laws_p(u) deduced _ this way:_rom the dab-of Fig' 25(d)--(_ are

shown in Fig. 30. In the cases where the extensometer gauge length was only 13 ram,

damage that developed outside the measurement interval prevents meaningful inferences.

The work of fracture, We, is related to p(u) by [42,43]

Wf = p(u)du (68)
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where uc is the critical opening displacement at which p vanishes. This is just the area

under the curves of Fig. 30. Values for Wf for each of the cases in Fig. 30 arc listed in

Table 12.

The work of fracture of the 3D woven composites is very large - approximately an

order of magnitude greater than that of unidirectional or cross-plied graphite/epoxy

laminates. Indeed, the values of Table 12 appear to exceed those for any other class of

materials (Fig. 31; [44]).

=,,

bandoftow ' 1
traction slraJghtening,

free rupture,Iockup,
crack andpullout

concen_at0r _ I I I I i i i _,

Jl

%.

Figure 29. Conjectured appearance of tow failure near a stress concentrator as a

propagating band of damage.

Table 12 also shows a breakdown of Wf into contributions W(fz) from the

hardening phase and W(f2) from the pullout phase: W(f 1) is by far the larger, the

contributions to W(f1) from plastic tow straightening and from tow rupture and lockup can

also be crudely separated. Assume that tow straightening f'mishes and tow rupture begins

when the applied strain is 2%. Over the gauge length d the corresponding value 2us of 2u

is given by

2us + _ d = 0.02 (69)
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Figure 31. The work of fracture of 3D woven composites compared to ranges of

values compiled for all other classes of structural materials (from [44] by

kind permission of the author).

The contribution of tow straightening to W(f1) is given roughly by the value of the integral

Eq. (66) when u¢ = us, with the remainder of W(f1) being the contribution from tow rupture

and lockup. The contribution from tow rupture can be estimated as fsWf(°D), where fs is

the area fraction of the stuffers and fW_ ) is the work of fracture of a unidirectional

carbon/epoxy composite. From Table 2, fs = 0.6; while fW_ ) ~ 100 kJ/m 2. These crude

estimates of the three separate contributions to W(f]) are listed in Table 12. The
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contribution from lockup, i.e., the effects of sliding and friction enhanced by asperity

contact prior to the primary load drop, is generally the greatest but also probably the most

variable.

7.9 Tow Waviness Effects in the Pullout-Phase

Further corroboration of the concept of lockup (or friction greatly enhanced by

tow irregularity) is found from data in the pullout phase. Close inspection of Fig. 30(a)

reveals an interesting feature of the pullout phase: the slope of doa/du possesses a

succession of extrema at values of crack opening displacement 2u separated by

approximately 2 ram. This implies a roughly periodic variation of the friction stress,

which could be an effect of tow waviness. Indeed, stuffer distortions are often

commensurate with the separation of fillers, which might be expected as a result of the

weaving process. The filler separation is approximately 2 mm for the architecture h-L-1

of Fig. 25(d) (Table 8).

7.10 Notch Sensitivity

Notch sensitivity when damage propagates in a band defined by the constitutive

law p(u) is most generally expressed in terms of the charactersfic length,/ca, of the

nonlinear cohesive zone [45-9]. To order of magnitude

lch EeWf , (70)
p2m_x

where Pmax is the maximum value of p(u), i.e., the unnotched material strength. If any

smooth stress concentrator is much larger than lch, then the strength, oe, of the part will

be reduced from Pmax by the stress concentration factor computed for an elastic body,

e.g., 1/3 for a circular hole. If the length ao of a sharp notch is much greater than lea, then

oc _ _ ; (71)

i.e., strength falls indefinitly as a_1/2. On the other hand, if any stress concentrator or

sharp notch is much smaller than leh, then the strength loss is minimal; the reduction of oe

from Praax is not far from that implied by net section considerations. Thus leh

characterizes the transition from notch sensitivity to notch insensitivity.
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Values of/ch deduced from the laws p(u) of Fig. 30 are listed in Table 12.

Commensurate with their high work of fracture, 3D woven composites are exceptionally

notch insensitive, with lch = 40 -100 ram. Values of lch for unidirectional or cross-plied

graphite/epoxy composites or for tough alloys are typically just a few mm.

Table 12. Contributions to the Work of Fracture

Hardening Phase Pullout Phase
Work of Cohesive

Composite Fracture Plastic Tow Tow Pmax Zone Length
Label WfOd/m z) W_ Od/mz) Straightening Rupture Lockup Wf _ 0dhn z) (MPa) lch (nan)

h-L-1 1140 830 -70 -60 -700 310 1000 100

h-T-1 395 350 -70 --60 -220 45 900 40

h-T-1 500 460 -70 -60 -330 40 900 50
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8. Summary of Results for Textile Modeling

In the course of this research, we have developed guidelines for modeling textiles

in general, including 2D and 3D braids and weaves and stitched/woven or stitched/knitted

materials. We have consistently sought the simplest model for predicting any given

property that is physically correct and has the fewest unknown parameters. Specifying the

degree of modeling sophistication necessary in different applications is one of our

primary accomplishments.

8.1 Elastic Regime

Flat or curved panels

The macroscopic elastic constants of flat or curved panels can be predicted by the

simplest of all models, viz. orientation averaging calculations based on isostrain or

isostress conditions. Here, "macroscopic" signifies gauge lengths at least several times

any scale of the underlying fabric architecture. For most current textile composites, this

means > 10 ram. We have delivered a computer code (Appendix D) in this program

which applies orientation averaging to the geometry of 3D interlock weaves. The code

includes an input parameter for waviness in nominally straight tows. Simple, analytic

estimates are provided for the extent to which waviness knocks down tow stiffness

(following Eqs. (10)-(12)) and the concomitant effects on composite elastic constants.

Analyzing Structures

Many vital potential applications of textiles involve geometrically complex

structural parts, e.g. woven or braided beams, ribs, and window belts; and integrally

woven or stitched skin/stiffener assemblies. To design such internally complex structures

and predict their reliability, the arrangement of tows must be modeled explicitly. When

triaxial stress states exist, the isostrain or isostress assumptions of orientation averaging

are likely to fail. At the same time, a very efficient formulation is necessary to deal with

significant volumes of material, i.e., one with the fewest degrees of freedom permitted by

the physics of the problem. Our Binary Model was designed for such applications.

Calibration tests using fiat panels of 3D weaves indicate that for calculations in

the elastic regime, stiffness parameters in the Binary Model can be specified a priori in
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termsof fiber and resin properties (Chap. 4). The Binary Model is now being adapted to

model 3D braided engine mounting structures in ARPA's Affordable Composite

Technology program1; to model stitched structures in aircraft wings; and to model brittle

fracture and creep rupture in ceramic and intermemllic matrix composites. 2

Effects of Irregular Geometry

Tows in textile composites are inevitably irregular. The Binary Model allows

Monte Carlo simulations of the effects of irregularity by permitting random initial tow

offsets. Theoretical studies using the Binary Model have shown that stress variations in

primary load bearing tows due to their own waviness axe commonly much greater than

those caused by local configurations of the ideal tow architecture (Section 4). We infer

that detailed analysis of local stress distributions based on finite element simulations

using highly refined grids to represent geometrically ideal unit ceils are of questionable

value in predicting strength. Insofar as such calculations are right, i.e., in their predictions

of average stresses that axe not sensitive to details of the unit cell, they could be replaced

by simpler models.

8.2 Modeling Unnotched Strength

Compression

We have shown by extensive and detailed experimental analysis that textile

composites fail in monotonic compression by kink band formation when the external load

is aligned with one set of tows. Kink band formation follows Argon's law: the critical

stress is the ratio of the critical shear stress for large shear strains in the tow divided by

the local tow misalignment angle (Eq. (41)). The keys to predicting compressive strength

are therefore 1) to measure the distribution of misalignment angles and 2) to predict the

axial stress in a tow for a given external load.

The local axial stress can be computed by either the Modified Laminate Model

(Appendix D) or the Binary Model (Appendix E), depending on whether the part or

reinforcement geometry implies important triaxial stress distributions (e.g., on whether

1 Work in collaboration with UC Santa Barbara in a Pratt and Whitney program.
2 Joint work between Rockwell and UC Santa Barbara (in their ARPA URI) on the design of advanced,
high temperature engine materials.
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the part is a nearly laminar skin or a complex shape). The misalignment cannot be

predicted. It must be measured. Its control in manufacture will always be a critical issue

for textile composites.

Tension

For aligned loads, tensile failure occurs by tow rupture. Tensile failure strains or

the stresses in aligned fibers at peak load are fairly consistent over different composites of

the fiber and resin within the same textile class. However, strengths are generally

substantially reduced from those that might be expected from data for unidirectional tape

laminates. Textile processing is apparently injurious to fiber tows; and nonuniform load

distribution due to random tow waviness promotes early failure in relatively straight

tows. Strength predictions should be based on calculations of tow stresses, e.g. via the

Modified Laminate Model or the Binary Model, coupled with experimental tensile test

data to calibrate tow strength and waviness effects.

8.3 Modeling Fatigue

Compression

Compression-compression cyclic loading results in tow failure by kink band

formation. A new rule for fatigue damage accumulation has been postulated, extending

Argon's law by introducing a degradation rate for the critical shear flow stress (Eq. (52)).

A procedure has been established for deducing unknown fatigue parameters from load-

life data (Section 5). Given this calibration, fatigue life can be predicted for general tow

arrangements by computing the local axial tow stress via the Modified Laminate Model

or the Binary Model, as applicable; and combining this with distributions of measured

misalignment angles. From these data, the expected number of kink bands in a critical

structure after N cycles can be predicted. The critical number of kink bands for failure of

the part should be determined by calibrating experiments.

Tension-Compression Fatigue

Experiments of 3D interlock weaves show that most fatigue damage occurs on the

compressive load cycle. Empirical laws for the moderate but significant effects of the

tensile load cycle await more test data.
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8.4 Modeling Notched Strength

Predictions of ultimate strength when a notch exists should be based on a cohesive

zone model with the bridging relation p(u) of Section 7.8. If p(u) is known, then damage

propagation, strength, fracture toughness, and specimen size and shape effects can be

computed by now standard methods for solving line spring, bridged crack models by

integral equation formulations (e.g. [50]) or using finite element methods. There arc two

viable approaches to determining the material property p(u). It can be measured direcdy

via tensile tests, as in Section 7; or it can be deduced from crack growth and/or notch

sensitivity data for some set of standard specimens. In the latter method, p(u) could

conveniently be expressed in parametric form. Key parameters arc Pmax, the maximum

value of p, which determines unnotched strength; Wf = 2[lxlu, the work of fracture for a

cohesive zone in the steady state or small scale bridging limit (e.g. [42], [43], [48], [49]);

and uc, the critical opening displacement at which p vanishes. Other details of the shape

of p(u) may prove to be of minor significance.

Section 7 warns of considerable variance in measurements of p(u) for different

specimens cut from the same composite panel. Randomness in p(u) will be reflected in

randomness in notched strength. A viable approach would be to establish distributions for

parameters such as Wf, Pmax, and uc; and then compute distributions for notched strength.
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Appendix A. Weave Patterns

This index provides details on the patterns of yarns found in the composites of

Table 1.

In every composite, the stuffers and fiUers form a coarse 0/90 ° array. Stuffers and

t-fliers alternate in layers through the thickness, with fillers always occupying the

outermost layers. The through-thickness reinforcement, or warp weavers, traverse the

thickness of the specimen in planes normal to the fillers. They bind together fillers in

different layers as they turn around them (e.g. Fig. A. 1). The warp weavers also serve to

hold the stuffers roughly in columns standing normal to the filler direction. The number

of warp weavers between columns of stuffers, nw, is usually one or two.

In angle interlock weaves, the warp weavers follow approximately sawtooth

paths. Successive segments make angles of approximately 45 ° to the stuffer direction. In

through-the-thickness angle interlock weaves, warp weavers turn only around fillers in

the outermost layers (Fig. A.lb). In layer-to-layer angle interlock weaves, most warp

weavers couple fillers in successive fillers; a few, lighter warp weavers oscillate entirely

within either of the outermost layers of f'dlers, passing alternately under and over

successive fillers (Fig. A. la).

In orthogonal interlock weaves, the warp weavers pass right through the specimen

approximately at right angles to the stuffer direction (Fig. A.lc). In composite h-O-l,

they pass around a single filler in the outer layer of fillers before reversing back through

the thickness. In composites l-O and h-O-2, they pass around two fillers before reversing.

Thus the warp-weavers in orthogonal interlock weaves follow approximately rectangular

wave paths of height t, the specimen thickness, and half wavelength either al (h-O-1 and

h-O-2) or 2al (l-O), where al is the center-to-center separation of fillers.

The grids used in Binary Model simulations can be described conveniently as a

sequence of planes lying normal to the filler direction. Most of these planes are shown in

Fig. A.2. Additional grid plane patters are derived from those shown as follows: pattern

S(6) is similar to S(4); pattern 0(6) is similar to C_); and patterns T(16) ... T(76)are similar to

"lAx4)... "I454);but all with two extra layers of stuffers and fillers. The grid and thus the

reinforcement architecture in any case is defined by the sequence in which planes are

encountered upon progressing down the filler direction (along with data for spatial scales

105



- see Eqs. (16)-(18) and Chapter 3. The sequences are listed for all composites in Table

A.1.

body warp weaver--_surface warp

(a)

SC-Ob049-T

(b)

(c) -

......
0 0 0 0 0 L

0 0 0 0 0 0

0 0 0 : 0 ,_0

0 _0. 0 0

, ___ \, _

0 filler (weft) _=a stuffer (straight warp)

warp weaver

Figure A. 1. Schematics of the three 3D weave architectures studied in this work. (a)

Layer-to-layer angle in interlock. (b) Through-the-thickness angle

interlock' (c) Orthogonal interlock. The numbers indicate the order in

which Warp weavers are encountered in progressing down the filler

direction.
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Figure A.2

SPecimen

oundary

SOl

q_

..... ::::: • • • • •

• • • . • • • • • • • • • • •

,,,io

.°°.. °°°°.

_ggel •

..... ::::: ..... :::Z:

em_u_ i ole

°°°.° *..ml.e°e*.llo*

Node patterns for models of composites with four or six layers of stuffers.

Each diagram shows all nodes on a single plane lying normal to the filler

direction (x2 axis). An open circle indicates a node shared by filler and

effective medium elements. A solid dot indicates a node shared by

effective medium elements; and also by stuffer elements if it lies on an

unbroken horizontal line. Solid triangular elements indicate nodes shared

by warp weaver elements.
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Where planes containing warp weavers appear consecutively in any sequence,

they are assigned the same value of position coordinate x2: the warp weavers are

generally much lighter than smiters and fillers and are packed into a thin volume between

successive columns of stuffers.

Table A.1 Grid Plane Sequences

Composite
Label

i-L-I

I-L-2

I-T-1

loT-2

1-O

h-L-1

h-L-2

h-T-1

h-T-2

h-O-1

h -O-2

Sequence

S (4), L_a), I._4), S 0)), L_4), _Is4)"$14) I._4), ___._),S (4), L._4), _'174)

S(4), L_4)' L_4), S (4), L_4)' _'(54)' S(4), L_4)' _i 4), S (4), L_4)' _'(74)

S (4), T_4), _), S (4), T_4), ;i/s4), S(4) T!4), ;i_l4), S(4), ¥(44)3, T_')3, S '4)3, T_4), ;i;(_)

S.), T_4)' ;_24), $14)" T_4)"_s41, S,4) ' Tt4)' _4), SO), ¥144)' T_4)' SO), T_,) ' ;i$34)

3S (4), OJ2 4), _,_)

S 14)' L_4)' S 14)' L_4)' S (4)" _'(24)' S'4), L(_), S `4)' L[ 4)

S (6,, L] 6), S (6), L;_6), S (6), _1_), S ('), L(_), S (6), _'(i(_),S (6), L_6) S (6), _'(3')

S f4), TI4)' _i 4), S 14),T_4), ;i_34),S(4), T_4), ;i:154),S{4), ?_), T_4), S f4), T_4), ;i_44,

S (6), TI 6), ;i/16),$16), T_ 6), ;i_f ,, S `6), T_'), ;i:ls6), S(6), _76), T_6), S 16),T_6)' ;_126'

S 16),T_'), _'), $16), T_6), ;_6')

2s,')oi')s(',,
zs"),ol'),s`'),

Notes: 1.

.

A bar specifies a grid plane obtained by inverting the diagram whose label has no bar about a

horizontal midline (e.g., O(14)in Fig. A.1).

A number before a symbol indicates repetition (e.g., 2.S (4) - S {4')) S(4_.
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Appendix B. The Elastic Properties of Unidirectional Fiber Composites

This appendix provides further details of the use of existing models in the

literature for estimating the elastic properties of unidirectional fibrous composites. In the

following, V is the fiber volume fraction; Er and Vr are Young's modulus and Poisson's

ratio for the resin; Ef and vf are Young's modulus and Poisson's ratio for the fibers under

axial load; I.tf is the axial shear modulus of the fibers: Eft is the transverse Young's

modulus for the fibers; and vft is Poisson's ratio for the fibers in their plane of isotropy.

The following five models of unidirectional composites were compared.

(i) Rules of Mixtures (e.g.[24]).

(ii)

(iii)

Hill's Self-Consistent Method [27].

Christensen's Modified Self-Consistent Model [28].

(iv) Van Fo Fy's infinite series results for an hexagonal array [51], as

simplified in [22].

(v) The average of Hashin's bounds for anisotropic fibers in an isotropic

matrix [26].

Each model provides explicit expressions for the unidirectional composite elastic

constants. In rules of mixtures, any composite property qc is related to the corresponding

constituent properties qf and qr by either

qc = Vqf+ (l-V) qr CB.la)

or qc = V/qf + (1-V)/qr; (B.lb)

with Eq (B.la) used for the axial Young's modulus and Poisson's ratios and Eq. (B.lb)

for the transverse Young's modulus and shear moduli. For models (ii)-(v), the reader is

referred to the cited references for the relevant formulae, which are straightforward but

lengthy to write out. A computer program for their evaluation can be obtained from the

authors.

Properties estimated using the constituent properties of Table 5 for a

unidirectional composite of AS4 fibers in Shell 1895 resin are compared as functions of
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fiber volume fraction for each of the approximations (i)-(iii) and (v) in Fig. B.1. For

models (i)-(iii), where the fibers are assumed isotropic, only the axial modulus Ef and

axial Poisson's ratio vf were used in producing this figure. For Hashin's model, estimates

were made for both isotropic and anisotropic fibers. Results for model (iv) are not plotted

because they are very close to those from Christensen's method, except near V=0 and

V=I, where some accuracy was lost in the simplified expressions given in [22].

Among allthe cases,no discrepancyisfound inthe axialmodulus, Ex, which was

thereforenot plotted.Itisgiven very accuratelyby the ruleof mixtures.In contrast,some

significant discrepancies _C found in wansverse and shear moduli an d Poisson's ratio in

the plane of isotropy. In rules of mixtures, transverse properties and Poisson's ratios are

estimated by partitioning stresses between the fibers and resin as though they were

an'anged in layers (e.g., [24]). The estimates given by rules of mixtures for transverse

modulus and shear moduli are consequently less than those in the other models, in which

the fiber geometry is treated more accurately. All of the approximations give very similar

results for composites of isotropic fibers at low volume fraction, V. Hill's method gives

transverse and shear properties that are much too high when V >_ 0.3 and the fibers are

much stiffer than the matrix, which is almost universally the case for polymer

composites. Christensen' s self-consistent model and Hashin's composite cylinder model

give similar results for composites with isotropic fibers. However, as the data of Table 5

show, graphite fibers are highly anisotropic. Thus, the shear and transverse moduli shown

in Fig. B.1 for Hashin's model for anisotropic fibers are much lower than those for

models (ii) and (iii). Indeed, for 0.4 < V < 0.6 all constants except the axial shear

modulus are fortuitously rather close to the rule of mixtures predictions.

Engineering elastic constants were then estimated for each 3D woven composite

using the constituent properties of Table 5 and all five methods of estimating domain

properties. Some representative constants computed for c_mposite h-L-1 are compared in

Table B.1. Barring the results from Hill's model, which is clearly wrong for such high

volume fractions, there are only quite small variations among the different entries for any

property. The estimates following from rules of mixtures and Hashin's model with

anisotropic fiber properties are especially close for every engineering constant, including

those not shown in Table B. 1, with the single exception of the in-plane shear modulus

G12, where a 30% difference is found.
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Figure B.1. Comparison of the elastic constants predicted for a unidirectional

AS4/1895 composite using various models from the literature.
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In the process of computing elastic constants for the composite, fiber volume

fractions and elastic properties are also found for individual tow domains. These are

given in Table B.2 for Hashin's model and the composite volume fractions, etc., of

Tables 1,2, and 5. Table B.2 does not include the effects of tow waviness.

Table B.1

Comparison of Estimates of 3D Composite Elastic Constants for
Composite h-L-1 Using Different Models for Domain Properties

Model for E1 E2 G12 v12 E3
Domain Properties (GPa) (GPa) (GPa) (GPa)

Rule of Mixtures a 91.6 56.7 3.7 0.037 12.4

Hill [30]a 102.1 70.3 26.6 0.11 34.5

Christensen [31]a 93.8 60.2 5.7 0.056 17.9

Van Fo Fy [35]c 93.3 59.5 5.7 0.053 17.3
Hashin [29] Ia 93.7 60.1 5.7 0.056 17.9

iib 91.5 56.2 5.4 0.034 12.I

afor isotropic fibers with Ef and Vf as in Table 4.

bfor anisotropic fibers.

cwith simplifications of Gowayed and Pastore [22].

Table B.2

Computed Tow Domain Properties

Composite StuffersNillers Warp Weavers
Label

(a)Lightly Ex Ey Vxy Gxz Vyz Ex Ey Vxy Gxz
Compacted (GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

&L-I 84.2 5.11 0.280 2.32 0.378 5.II 5.11 0.280 2.32

t-L-2 88.8 5.25 0.279 2.42 0.375 6.13 6.13 0.264 2.37

t-T- 1 111.1 6.04 0.274 3.02 0.362 6.04 6.04 0.274 3.02

t-T-2 97.6 5.54 0.277 2.64 0.370 ,6.62 6.62 0.261 2.57

t-O 115.1 6.19 0.273 3.14 0.360 6.19 6.19 0.273 3.14

Vyz

0.378

0.365

0.362

0.360

0.360

Co)Heavily
Compacted

h-L- 1 147.1 8.72 0.267 5.50 0.340 8.72 8.72 0.267 5.50
h-L-2 132.5 7.98 0.270 4.62 0.349 7.98 7.98 0.270 4.62
h-T-1 145.5 8.63 0.267 5.39 0.341 8.63 8.63 0.267 5.39
h-T-2 140.6 8.38 0.268 5.08 0.344 8.38 8.38 0.268 5.08
h-O-1 146.9 8.71 0.267 5.48 0.340 8.71 8.71 0.267 5.48
h-O-2 140.9 8.39 0.268 5.09 0.344 8.39 8.39 0.268 5.09

0.340
0.349
0.341
0.344
0.340
0.344

Note: The axis x lies in fiber direction, with the axes y and z forming planes of isotropy.
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Appendix C. Numerical Methods for Fatigue Analysis

Procedure for Maximizing Eq. (56)

To avoid difficulty with numerical precision, Eq. (55) was written in the

normalized form

l-Ae¢'o
N.- 1 = o (C.1)
I [x o,of

E,
with °o- _ (C.2)

Avm mzLX -= S° m (C.3)

Initial estimates of _i_ were made from the monotonic loading data:

_(i) "g0
fit = (C.4)

AOio

_(i)
where Aoi0 is the load amplitude for failure on the first cycle. Given estimates of { _fit },

A and m were updated by minimizing S of Eq. (56). Given new estimates of A and m,
. (i)

each _fit could then be updated by minimizing

Si = _. [f'l(Aoij,_),A,m} -Nij] 2

J

(C.5)

i.e. the data for the i th composite only. Iteration of the last two steps leads quickly to a

global minimum for S.

113



Estimates of Uncertainty in Fitted Parameters

If the fatigue model Eq. (55) is valid, then departures of the experimental data

from the fitted curves in Fig. 21 are a measure of experimental noise. The deviance Ox in

a fitted parameter x (x - _(fii_or m) is

=x,j /,%
(c.6)

where Nij has been considered the independent variable and Acij the dependent variable;

and Affij has been assumed normally distributed with deviance aaoij. From the minimum

value found for S in Eq. (56), ffaaij = 20 MPa for the data of Fig. 21. The partial

derivatives in Eq. (C.6) were estimated by altering one datum Aoij at a time and resolving
0)

the minimization problem. As expected, _{;fit) / _(Aaij)is small unless i=j. The calculated

_.(i).
deviance in any misalignment angle t_fit is only - 0.2°; while the deviance in m is ffm = 4.
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Appendix D. 'WVeave.r': A Computer Program for Solving an Orientation

Averaging Model of 3D Woven Composites

This fortran program fmds the macroscopic elastic constants of a 3D woven composite

similar to the subject materials of this report. It follows the model of Section 3. The

program has one input file and one output file. The input contains the following variables:

V ""

fs =

ff =

fw =

as =

af =

aw =

ef =

efw =

eres =

pf =

pfw =

pr =

bf =

ear =

eft =

paf =

pff =

gaf =

=

total volume fract, of all kinds of fibers in composite

fraction by vol. of all fibers that lic in stuffcrs

" " '.... ' " fillers

" " " " " " weavers

fi'actionby volume of composite assignedto stuffers

...... fillers

TI II 11

Young's modulus of fibers in stuffcrs or fillers
11 I! II

warp weavers

.... resin

Poisson'sratioof fibersinstuffersor fillers

...... in warp weavers

.... resin

planc strainbulk modulus of fibers

axialYoung' modulus forfibersin stuff,or fillers

transverse " " " " " "

axial Poisson's ratio " " ....

transverse " '..... "

axial shear modulus ........

transverse shear modulus " ....

other input constants ending in 'w' are for weaver fibers

weave -

p2s,f,w =

sf

orth' if orthogonal interlock

'ltor if layer-to-layer angle interlock

'thru' if through-the-thickness angle interlock

2nd moment of normal distn of misalignment angles

for stuffers,fillers,warp weavers.

= scale factor for p2s,f,w to test sensitivity.

115



ys,f = yields of stuffers and fillers

ends, picks = number of (stuffers, fillers) per unit length

nsmf = number of layers of sniffers through thickness

nw = number of fillers between turns of weavers (orth only)

t = specimen thickness

data should appear in the following order in input f'de 'ortho.dat', arranged on four lines as

shown:

weave dummy label

v,fs,ff, as,af, p2s,p2f, p2w,eres,pr

eaf, etf, gaf, gtf, paf, ptf, eaw,etw,gaw,gtw,paw,ptw

ys,ends,yf, picks,nstuf, nw,t

representative input file 'ortho.dat' with data for the 11 composites of Table 1 (11 sets of

data in one f'de):

ltol ILl

.35 .385.418.385.418 0.00 0.00 0.00 3 .3

235. 17. 55. 6.7 .25 .27 235. 17. 55. 6.7 .25 .27

.652 5.1 .652 4.4 4 0 1.26

ltol 1L2

.37 .347.501.347.501 4.01 9.86 0.00 3 .3

235. 17. 55. 6.7 .25 .27 85. 85. 32.7 32.7 .22.22

.652 5.1 .652 5.9 4 0 1.24

thru 1T1

.466.381.504.381.504 3.39 6.05 0.00 3 .3

235. 17. 55. 6.7 .25 .27 235. 17. 55. 6.7 .25 .27

.652 4.7 .652 5.0 4 0 1.02

thru 1T2

.408.406.496.406.496 3.54 6.42 0.00 3 .3

235. 17. 55. 6.7 .25 .27 85. 85. 32.7 32.7 .22.22

.652 5.1 .652 5.0 4 0 0.97

orth 10

.483.387.524.387.524 3.40 1.20 0.00 3 .3

235. 17. 55. 6.7 .25 .27 235. 17. 55. 6.7 .25 .27
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•652 4.7 .652 5.1 4 2 0.88

lto1 hL1
.62 .587.340.587.340 1.746.380.00 3.7.3

235. 17. 55. 6.7 .25 .27 235. 17. 55. 6.7 .25 .27
.570 5.5 1.14 5.1 4 0 0.561

ltol hL2

.557.580.375.580.375 2.0414.80.00 3.7.3

235. 17. 55. 6.7 .25 .27 235. 17. 55. 6.7 .25 .27

1.14 7.1 2.28 7.9 6 0 0.625

thru hTl
.613.571.331.571.331 1.332.940.00 3.7.3

235. 17. 55. 6.7 .25 .27 235. 17. 55. 6.7 .25 .27

•570 5.5 1.14 5.1 4 0 0.573

thru hT2

.592.571.369.571.369 1.654.230.00 3.7.3

235. 17. 55. 6.7 .25 .27 235. 17. 55. 6.7 .25 .27

1.14 7.2 2.28 7.9 6 0 0.577

orth hO1

.619.586.340.586.340 0.253.350.00 3.7.3
235. 17. 55. 6.7 .25 .27 235. 17. 55. 6.7 .25 .27

.570 5.5 1.14 5.1 4 1 0.579

orth h02

.593.545.353.545.353 0.851.960.00 3.7.3

235. 17. 55. 6.7 .25 .27 235. 17. 55. 6.7 .25 .27

1.14 7.1 2.28 7.9 6 1 0.587

resultingoutput file 'ortho.out'(resultsshownonly for first casein input file):

r. of m. following Hashin

oriav method

sf= 1.00

vs,vf, vw= 0.350 0.350 0.350 as,af, aw= 0.385 0.418 0.197

p2= 0.000 e,pf=235.00 0.25 e,pr=- 3.00 0.30 v=0.350

p2= 0.000 e,pf=235.00 0.25 e,pr=- 3.00 0.30 v=0.350

p2= 0.000 e,pf=235.00 0.25 e,pr---- 3.00 0.30 v=0.350
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etas,f,w= 1.00_ 1.0000 1.0000

vs,ef, pf, bf, gaf, gtf,eres,pr,rom=

0.35235.00 0.25 11.79 55.00 6.70 3.00 0.30 Hashin

v,fs,ff=0.350 0.385 0.418 as,g= 0.385 0.418 eres,pr= 3.000.300 weave=ltol

ef, pf, bf, gaf, gff= 235.0000 0.2500 11.7899 55.0000 6.7000

" for weavers= 235.0000 0.2500 11.7899 55.0000 6.7000

el,2,3= 36.84 38.68 9.00 g12,23,31= 2.27 2.09 5.95

p12,21,23,32,31,13= 0.023 0.025 0.216 0.050 0.148 0.607

rflexl,2= 0.79449 1.19107
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Appendix E. The Binary Model of Textile Composites

The formulation of the Binary Model has been fully described in [23] and [37]. A

summary may also be found in Section 4. A FORTRAN computer code BINMOD has

been delivered to NASA Langley Research Center along with this report. Here operating

instructions are provided.

nlnlza

Input is entered in an input ride called MOD.INP. It consists of 1) instructions for

setting up the tow architecture; 2) material properties; and 3) the loading configuration.

Instructions are included for the elastic ease only. Simulations of progressive damage to

ultimate failure in both monotonic and cyclic loading are now being performed under

other funding.

The code solves for all stresses and strains in a cuboidal slab of composite

containing stuffers in the Xl direction, rifflers in the x2 direction, and body and surface

warp weavers. Representative possible architectures may be found in Appendix A.

Command Summary for Binary Model Input

In the following commands, I,J, & K refer to planes on Cartesian axes on which all tow

elements and effective medium faces lie. The discrete space (I,J,K) refers to points at the

intersection of three planes; the origin has coordinates (1,1,1) and I,J, & K increase in the

positive axis directions.

Each (I,J,K) identifies the location of a node shared by two, four, or eight effective

medium element (depending on whether (I,J,K) is inside the simulated cuboid or on a

boundary surface or edge. Every stuffer or filler node lies on some (I,J,K), but not all

(I,J,K) are occupied by a stuffer or filler node. Warp weaver nodes lie just above or

below some (I,J,K).

The coordinates (I,J,K) are used to assign a unique number to each node, which

determines the global degrees of freedom associated with that node in the finite element

formulation.
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Since stuffer and filler nodes are a subset of effective medium nodes, the geometry of the

effective medium ('EMGEN') is specified first.

'*' A COMMENT FOLLOWS AN ASTERISK ENCLOSED BY SINGLE QUOTES

All keywords are enclosed in single quotes.

KEYWORD FIELDS COMMANDS

'*' GEOMETRY:

'*' generate effective medium elements

'EMGEN' NI NJ NK XE YE ZE ZLT ZLW1 ZLW2

NI - Number of nodes in the I direction

NJ - Number of nodes in the J direction

NK - Number of nodes in the K direction

XE - Element size in the X direction (al)

YE - Element size in the Y direction (a2/2)

ZE - Element size in the Z direction (a3)

ZLT - Element thickness on the top/bottom of specimen (a3')

ZLW1 - Body weaver offset from EM node

ZLW2 - surface weaver offset from EM node

'STFGEN' J0 K0 J'M KM JD KD

J0 - J location of first stuffer

K0 - K location of fast stuffer

JM - Maximum J location of stuffers

KM - Maximum K location of stuffers

JD - Delta J increment to next stuffer in J direction

KD - Delta K increment to next stuffer in K direction

Generate stuffer elements

'FILGEN' I0 K0 IM KM ID KD

I0 - I location of fast filler

K0 - K location of fast filler

IM - Maximum I location of fillers

KM - Maximum K location of fillers

Generate filler elements
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ID - Delta I increment to next filler in I direction

KD - Delta K increment to next filler in K direction

'BWVGEN' I0 J0 K0 IM ID KD IAB Generate body weavers

I0 - I location of frrst segment of body weaver

J0 - J location of first segment of body weaver

K0 - K location of first segment of body weaver

IM - Maximum I location of fdlers

KM - Maximum K location of ftllers

ID - Delta I increment to next filler in I direction

KD - Delta K increment to next filler in K direction

IAB - +1 Start above node I0,J0,K0

-1 Start below node I0,J0,K0

0 Determine start from previous pattern or initial slope (KD/ID)

'SWVGEN' I0 J0 K0 IM KM ID KD lAB Generate surface weavers

I0 - I location of ftrst segment of body weaver

J0 - J location of first segment of body weaver

K0 - K location of first segment of body weaver

IM - Maximum I location of fillers

KM - Maximum K location of fillers

ID - Delta I increment to next filler in I direction

KD - Delta K increment to next filler in K direction

IAB - +1 Start above node I0,J0,K0

-1 Start below node I0,J0,K0

0 Determine start from previous pattern or initial slope (KD/ID)

'RNDGEOS' GS ISEDG Randomize geom. of stuffers

GS - determines std. dev. of deviation in z axis direction

ISEDG - random integer seed

'RNDGEOF GF ISEDF Randomize geom. of fillers

GF - determnes std. dev. of deviation in z axis direction

'*' MATERIAL PROPERTIES:
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'EMMAT EM VXY VXZ GXY EMYLD

EM - Young's Modulus of EM

VXY - Poisson's ratio XY

VXZ - Poisson's ratio XZ

GXY - Shear Modulus XY

Set material prop's of EM

'STFMAT ESTF Set stiffness of Stuffcrs

ESTF - Young's modulus of stuffers (Adjusted)

'FILMAT EFIL Set stiffness of Fillers

EFIL - Young's modulus of fiUers

'BWVMAT' EWEA1 Set stiffness of body weaver

EWEA1 - Young's modulus of body weaver (Adjusted)

'BWVSPR' ESPR1 Set stiffness of bwv spring

ESPR1 - Youngs modulus of spring (Adjusted)

'SWVMAT EWEA2 Set stiffness of Surface Weaver

EWEA2 -Young's modulus of Surface weaver

'SWVSPR' ESPR2 Set stiffness of swv spring

ESPR2 - Young's modulus of spring (Adjusted)

'*' SET LOADING CONDITIONS

'STRAIN' STRAIN IFACE IDIR Set total eng. strain and direction

STRAIN - magnitude of total engineering strain desired (> 0)

IFACE - Axis normal to loading plane (i=lj=2,k=3)

IDIR - Direction and axis of loading (+/- 1,2, or 3)

'STRINC' STRINC Set starting strain increment

STRINC - magnitude of strain increment (> 0)

'STRMIN' STRMIN Set minimum strain increment : =:

STRMIN - magnitude of minimum strain increment (> 0)
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'STRMAX' STRMAX Set maximum strain increment

STRMAX - magnitude of the maximum strain increment (> 0)

'FORCE' FORCE IFACE IDIR Set desired force loading

FORCE - magnitude of force on free end (> 0)

IFACE - Axis normal to loading plane (i=1,j=2,k=3)

IDIR - Direction and axis of loading (+/- 1,2, or 3)

"*' SET CONTROL FLAGS

'CHECK' Perform check run

'CR1T CRIT Set resid/force eoverg, ratio

'EMFAIL' Set EM Fail flag

'ITERATE' Set iterative sol. flag

Example - Input File for Linear Loading of Composite I-L-1 along Stuffer Direction

to Prescribed Engineering Strain

'*' ARCHITECTURE "l-L-2"

v_v

'*' GEOMETRY

DISPLACEMENT CONTROL IN X DIRECTION

v_v

v_v

'EMGEN'

lakm

'STFGEN'

w_v

SET UP EFFECTIVE MEDIUM FIRST

NL NW

9 9

NT XE YE ZE ZLT ZLW1 ZLW2

11 1.5694 0.9081 1.3667 0.7331 1.3667 1.3667

SET UPSTUFFERS

J0 K0

2 3

JM KM JD KD

8 9 2 2
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t,t

w,_v

o_o

'FILGEN'

v_l¢l

SET UP FILLERS

I0 K0 IM KM ID KD

1 2 8 10 1 2

'*' SET UP BODY WEAVERS

v_w

'*' I0 J0 K0 IM ID KD

'BWVGEN' 1 3 4 9 2 -2

'BWVGEN' 1 3 8 9 2 2

'BWVGEN' 1 5 6 9 2 -2

'BWVGEN' 1 5 6 9 2 2

'BWVGEN' 1 7 10 9 2 -2

'BWVGEN' 1 7 2 9 2 2

'BWVGEN' 1 9 8 9 2 -2

'BWVGEN' 1 9 4 9 2 2

'*' SET UP SURFACE WEAVERS

'*' I0 J0 K0 IM ID KD

'SWVGEN" 1 3 2 9 1 -1

'SWVGEN' 1 3 10 9 1 1

'SWVGEN' 1 5 2 9 1 -1

'SWVGEN' 1 5 10 9 1 1

'SWVGEN' 1 7 2 9 1 -1

'SWVGEN' 1 7 10 9 1 1

'SWVGEN' 1 9 2 9 1 -1

'SWVGEN' 1 9 10 9 1 1

v:_v

'*' SET UP MATERIAL PROPERTIES

IAB

0

0

0

0

0

0

0

0

.lAB

0

0

0

0

0

0

0

0

'*' E VXY

'EMMAT 5052.8 0.280

T_v

'*' E

VXZ

0.3789

GXY

2275.9

YLD

0.02

STRAIN
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'STFMAT 174295.5

'FILMAT 174295.9

'BWVMAT 35893.5

'SWVMAT 35893.5

'BWVSPR'4883.8

'SWVSPR'4883.8

'STRAIN'

'STRINC'
I_¢t

SET UP PARAMETERS FOR CONTROLLING EXECUTION

ENGSTRN IFACE IDIR

0.001 1 1

0.001

'*' maximum absolute error in net force at any node.

'CRrI" 0.05

'ITERATE'

Example - Output files for above input.

File MOD.BRK contains:

A summary of macroscopic behaviour in the simulation.

ITER

RSDL

ITER

RSDL

0 STRI 0.001_ STRN0.00(0)O)00

0.0000 TFRC 0.0000 TSTRS 0.0000

1 STRI 0.001(X)0(0)00 STRN 0.00100(O

0.0023 TFRC 4159.8601 TSTRS 44.8065

In this fde: ITER is the iteration count (zero prior to loading)

STRI is the applied strain increment

STRN is the accumulated applied strain

RSDL is the maximum computed error in all node forces

TFRC is the total force acting on the loaded plane

TSTRS is the average applied stress on the loaded plane
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The units in MOD.BRK arc always those of the data in the input file. Thus, for

example, ff moduli are supplied in GPA and dimensions in ram, then the force

TFRC will be in GPa.mm 2.

File MOD.GEOM contains:

The coordinates (I,J,K) of all nodes of all elements, in the order effective medium

elements, stuffer elements, filler elements, body warp weaver elements, surface

warp weaver elements, body warp weaver springs, and surface warp weaver

springs.

File MOD.STRESS contains:

1) stress components in order s11, s22, s33, s12, s23, s31 at each of the eight

quadrature points in each effective medium element

2) line forces qs, qf, and qw in the stuffer, filler, and warp weaver tow elements

File MOD.STRAIN contains:

1) strain components in order ell, e22, e33, el2, e23, e31 at each of the eight

quadrature points in each effective medium element

2) the macroscopic strains el 1, el2, and e31

File MOD>TFORCE:

LBDCD(I) records the (L)ist of displaced (B)oun (D)ary (C)on (D)ition degrees

of freedom (DOF), i=1 to #disp. For each DOF i, FC(DOF i) records the net force

acting in the direction of DOF i using the internal units of stress * area. The sum

of FC(DOF i) in each axis direction is the net force acting on the composite at the

end of the simulation. This sum is also reported in the file MOD.STA as the total

force.
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Tension

h-L-1

p-u test

Spec. #

Appendix G. Monotonic Loading Test Data

Peak Stress Strain to Modulus Thickness Width
(MPa) Failure (GPa) (ram) (ram)

1__2 573 0.013 81 5.6 10.34
1 4 690 0.0104 72 5.6 10.1

1_6 655 0.03 80.7 5.6 9.3
1__8 679 0.014 94.5 5.6 9.45
1__26 827 0.03 66 5.6 10.3
1_29 992 0.018
7_5 1000 0.02 91 5.4 9.4

1-24
1-25
1_30

903 0.025
917 0.028 56

h-L-2

6_10 935 0.04 83

h-T-1

h-T-2

h-O-1

h-O-2

2_1
2_13
2_15

840 0.038 "78
878 .043-->.1 58
904 .025-->.12 58

3_7 886 0.013 72
3_8 807 0.011 77

4 2 1075 0.013 89

4_3 1103 0.023 87
4__4 1027 0.015 78

5__10 856 0.014 66
9__10 846 0.013 70 5.9 9.4
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Compression

Spec. # Peak Stress
(UPa)

h-L-1
1_1
1_3
1_7

1_11
1_20
1_21
7_6

416
524
469
455
545
634
674

h-L-2

6_11 700

h-T-1

2_2
2_9

565
503

h-T-2

3_3
3_12

538
517

h-O-1
4_5 634

h-O-2
5_11
9_11

629
603

Compression: transverse loading

h-L-1
1_35 221

h-T-1
2-35 318

h-T-2

3_35 372

h-O-1

4_35 317

Strain to
Failure

0.006

0.0074
0.005
0.0055
0.007
0.009
0.009

0.01

0.008
0.005

0.01

0.0053

0.011

0.008
0.0084

0.01

0.01

0.008

0.016

Modulus

(GPa)

72

77
80
81
87

80

80
87

69
81.4

70

74
66

44

43

48

43

Thickness

(mm)

5.7

5.7
5.8

5.7
5.7

5.8

5.9
5.9

5.7

5.7

5.7

5.7

Width
(mm)

9.5

9.8
9.6

10.2

10.2

10.2

8.9
9.5

10.5

10.4

10.4

10.4
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Compression After Impact

h-L-1

buckled

Peak Stress Strain to Modulus
(MPa) Failure (GPa)

CO1-1 403 0.008 74
CO1-3 359 0.006 76

h-T-1
CO2-1

h-T-2
CO3-1

h-O-1

CO4-1

507 0.0082 75

442 0.0083 66

472 0.01 71

Thickness Width

(mm) (mm)

Open Hole Tension

h-L-1

h-T-2

Ultimate Load Ultimate Stress

(kip) (MPa)

1_5 23.2 kip 923
1_7 26.6 kip 1060

3_5 18.7 kip 749

Failure Location

grip
hole

hole
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